Characterization and classification of soils of Phalasia block of Udaipur district, Rajasthan

R. S. GILL, P. C. KANTHALIYA and J. D. GIRI

Department of Soil Science. Rajasthan College of Agriculture, MPUAT, Udaipur-313 001, India
1 NBSS&LUP (ICAR), Regional Centre, MPUAT Campus, Bohra Ganeshji Road, Udaipur-313 001, India.

On soil, a vital natural resource, depends the life supporting systems of a country and socio-economic development of its people. More than ever before, a renewed attention is being given to soils due to rapidly declining area for agriculture, declining soil fertility, increasing soil degradation, wrong land use policies and irrational and imbalanced use of inputs (Kanwar 2004). All the above factors call for a paradigm shift in research away from maximum crop production to sustainability of crop production without degradation of soil health. Agricultural intensification and massive infrastructure development in the recent years without considering the variability of entire production system enhances the risk of soil erosion and fertility depletion (Singh et al. 2007).

The information about the soils of Phalasia block of Udaipur, Rajasthan is scanty and hence the present investigation was carried out.

The study area (24°10' to 24°12' N; 74°18' to 74°19' E), represents semi-arid monsoonic climate. The annual precipitation is 780 mm of which 85 to 90% is received from June to September. The mean annual summer temperature is 32.7°C while the mean annual winter temperature is 18.4°C. Sorghum, maize and pigeonpea are important kharif crops and wheat, barley, gram and mustard are the rabi crops. Seven pedons, occurring on landforms having different slopes in Phalasia block of Udaipur district were examined for their morphological characteristics. Horizon-wise soil samples from typical pedons were collected, processed and were analysed for different physical and chemical properties using standard procedures. The soils were classified as per Keys to Soil Taxonomy (Soil Survey Staff 2003).

Soils occurring on nearly level land (P1) had dark yellowish brown to dark brown colour, and that of very gently (P2) and gently sloping land (P3) exhibited dark brown colour through the depth. Soils occurring on moderately gentle slopes (P4, P5 and P6) exhibited dark brown colour through the depth whereas soils on on moderately steep slopes (P7) had dark yellowish brown colour (surface horizon) and dark brown in subsurface horizon (Table 1).

The data on particle-size distribution indicated that sand is the major fraction (43.50 to 65.30 per cent) in all the soils. The silt content in the soils ranged from 14.59 to 34.37 per cent. It increased with gentler slope and depth. This could be attributed to the fact that finer particles are washed away from the upper reaches and carried to gentler slopes. The clay content in the soils varied from 10.26 to 25.73 per cent and did not show definite trend with slope but increased with depth.

The pH of soils ranged from 6.7 to 8.3 (neutral to slightly alkaline). In general the pH of the soils was higher in soils occurring on gentler slopes as compared to steeper slopes. The highest EC was noticed in the soils occurring on moderately sloping land (P7) and lowest EC are in soils of gently sloping land (P3). Calcium carbonate content ranged from 0.24 to 1.43...
Table 1. Morphological characteristics of soils

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>Horizon</th>
<th>Matrix colour</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1: Coarse-loamy Ustifluvent (Nearly level land, 0-1% slope)</td>
<td>0-23</td>
<td>Ap</td>
<td>10YR 3/4</td>
</tr>
<tr>
<td></td>
<td>23-40</td>
<td>2C1</td>
<td>10YR 3/4</td>
</tr>
<tr>
<td></td>
<td>40-62</td>
<td>2C2</td>
<td>7.5YR 3/4</td>
</tr>
<tr>
<td></td>
<td>62-82</td>
<td>2C3</td>
<td>7.5YR 3/4</td>
</tr>
<tr>
<td></td>
<td>82-110</td>
<td>3C4</td>
<td>7.5YR 3/4</td>
</tr>
<tr>
<td></td>
<td>110-150</td>
<td>3C5</td>
<td>7.5YR 3/4</td>
</tr>
<tr>
<td>P2: Coarse-loamy Fluventic Haplustept (Very gently sloping pediments, 1-3% slope)</td>
<td>0-15</td>
<td>Ap</td>
<td>10YR 3/3</td>
</tr>
<tr>
<td></td>
<td>15-40</td>
<td>Bwl</td>
<td>7.5YR 3/4</td>
</tr>
<tr>
<td></td>
<td>40-60</td>
<td>Bw2</td>
<td>7.5YR 3/2</td>
</tr>
<tr>
<td></td>
<td>60-100</td>
<td>2C2</td>
<td>7.5YR 3/2</td>
</tr>
<tr>
<td></td>
<td>100-120</td>
<td>3C3</td>
<td>7.5YR 3/2</td>
</tr>
<tr>
<td></td>
<td>120-150</td>
<td>3C4</td>
<td>7.5YR 3/2</td>
</tr>
<tr>
<td>P3: Coarse-loamy Typic Haplustept (Gently sloping pediments, 3-8% slope)</td>
<td>0-14</td>
<td>A1</td>
<td>7.5YR 3/4</td>
</tr>
<tr>
<td></td>
<td>14-40</td>
<td>Bwl</td>
<td>7.5YR 3/4</td>
</tr>
<tr>
<td></td>
<td>40-72</td>
<td>Bw2</td>
<td>7.5YR 3/4</td>
</tr>
<tr>
<td></td>
<td>72-97</td>
<td>Bw3</td>
<td>7.5YR 3/4</td>
</tr>
<tr>
<td></td>
<td>97-120</td>
<td>2C5</td>
<td>7.5YR 3/4</td>
</tr>
<tr>
<td></td>
<td>120-150</td>
<td>2C6</td>
<td>7.5YR 3/4</td>
</tr>
<tr>
<td>P4: Loamy-skeletal Lithic Ustorthent (Moderately sloping pediments, 8-15% slope)</td>
<td>0-30</td>
<td>Ap</td>
<td>10YR 3/3</td>
</tr>
<tr>
<td>P5: Loamy Lithic Haplustept (Moderately sloping pediments, 8-15% slope)</td>
<td>0-22</td>
<td>Ap</td>
<td>7.5YR 3/4</td>
</tr>
<tr>
<td></td>
<td>22-45</td>
<td>Bw</td>
<td>7.5YR 3/4</td>
</tr>
<tr>
<td>P6: Fine Typic Haplustept (Moderately sloping pediments, 8-15% slope)</td>
<td>0-22</td>
<td>Ap</td>
<td>10YR 3/4</td>
</tr>
<tr>
<td></td>
<td>22-52</td>
<td>Bw</td>
<td>7.5YR 3/4</td>
</tr>
<tr>
<td>P7: Loamy Lithic Haplustept (Moderately steeply sloping pediments, 15-30% slope)</td>
<td>0-13</td>
<td>Ap</td>
<td>7.5YR 3/4</td>
</tr>
<tr>
<td></td>
<td>13-33</td>
<td>Bw</td>
<td>7.5YR 3/4</td>
</tr>
</tbody>
</table>

Percentage in different soils and it increased with depth. This could be attributed to the downward movement of calcium ions and their precipitation in sub-surface layers. Similar results have been reported by Chaudhary (1992). The organic carbon content ranged from 0.21 to 1.25 per cent. The lowest OC content (0.45%) was found in surface soils of gently sloping land (P3) while the highest (1.13%) was found on soils of very gently sloping land (P1). The exchangeable Ca²⁺, Mg²⁺, Na⁺ and K⁺ ranged between 7.27 to 14.54, 4.77 to 15.22, 0.99 to 2.04 and 0.26 to 0.53 cmol(p+) kg⁻¹ soil respectively. It is observed that soils occurring
Table 2. Physical properties of soils

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>Mechanical composition</th>
<th>Density (Mg m$^{-3}$)</th>
<th>Water content (%)</th>
<th>AWC (cm3/cm3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sand (0.05-2.0 mm)</td>
<td>Silt (0.05-0.002 mm)</td>
<td>Clay (<0.002 mm)</td>
<td>B.D P.D. 33kPa 1500 kPa</td>
</tr>
<tr>
<td>P1 : Coarse-loamy Typic Ustifluvent (Nearly level land, 0-1% slope)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-23</td>
<td>54.6</td>
<td>31.5</td>
<td>13.9</td>
<td>1.3</td>
</tr>
<tr>
<td>23-40</td>
<td>57.1</td>
<td>21.3</td>
<td>21.6</td>
<td>1.4</td>
</tr>
<tr>
<td>40-62</td>
<td>53.4</td>
<td>30.1</td>
<td>16.5</td>
<td>1.5</td>
</tr>
<tr>
<td>62-82</td>
<td>55.5</td>
<td>33.4</td>
<td>11.1</td>
<td>1.4</td>
</tr>
<tr>
<td>82-110</td>
<td>58.9</td>
<td>22.6</td>
<td>18.5</td>
<td>1.5</td>
</tr>
<tr>
<td>110-150</td>
<td>64.8</td>
<td>18.4</td>
<td>16.8</td>
<td>1.5</td>
</tr>
<tr>
<td>P2 : Coarse-loamy Fluventic Haplustept (Very gently sloping pediment, 1-3% slope)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-15</td>
<td>56.6</td>
<td>23.1</td>
<td>20.3</td>
<td>1.3</td>
</tr>
<tr>
<td>15-40</td>
<td>52.9</td>
<td>21.2</td>
<td>25.7</td>
<td>1.4</td>
</tr>
<tr>
<td>40-60</td>
<td>60.9</td>
<td>24.6</td>
<td>14.5</td>
<td>1.4</td>
</tr>
<tr>
<td>60-100</td>
<td>55.5</td>
<td>28.9</td>
<td>15.6</td>
<td>1.4</td>
</tr>
<tr>
<td>100-120</td>
<td>58.0</td>
<td>24.3</td>
<td>17.7</td>
<td>1.6</td>
</tr>
<tr>
<td>120-135</td>
<td>59.6</td>
<td>23.4</td>
<td>16.9</td>
<td>1.5</td>
</tr>
<tr>
<td>P3 : Coarse-loamy Typic Haplustept (Gently sloping pediment, 3-8% slope)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-14</td>
<td>58.7</td>
<td>22.8</td>
<td>18.5</td>
<td>1.3</td>
</tr>
<tr>
<td>14-40</td>
<td>59.5</td>
<td>21.0</td>
<td>19.4</td>
<td>1.3</td>
</tr>
<tr>
<td>40-72</td>
<td>55.1</td>
<td>25.2</td>
<td>19.7</td>
<td>1.3</td>
</tr>
<tr>
<td>72-97</td>
<td>55.8</td>
<td>23.4</td>
<td>20.8</td>
<td>1.4</td>
</tr>
<tr>
<td>97-120</td>
<td>55.7</td>
<td>27.3</td>
<td>17.0</td>
<td>1.3</td>
</tr>
<tr>
<td>120-150</td>
<td>50.4</td>
<td>24.5</td>
<td>25.1</td>
<td>1.4</td>
</tr>
<tr>
<td>P4 : Loamy-skeletal Lithic Ustorthent (Moderately sloping pediment, 8-15% slope)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-30</td>
<td>59.6</td>
<td>30.1</td>
<td>10.3</td>
<td>1.5</td>
</tr>
<tr>
<td>P5 : Loamy Lithic Haplustept (Moderately sloping pediment, 8-15% slope)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-22</td>
<td>61.2</td>
<td>14.6</td>
<td>24.2</td>
<td>1.6</td>
</tr>
<tr>
<td>22-45</td>
<td>43.5</td>
<td>21.3</td>
<td>25.3</td>
<td>1.7</td>
</tr>
<tr>
<td>P6 : Fine-loamy Typic Haplustept (Moderately sloping pediment, 8-15% slope)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-22</td>
<td>62.2</td>
<td>20.8</td>
<td>17.6</td>
<td>1.2</td>
</tr>
<tr>
<td>22-52</td>
<td>57.6</td>
<td>25.8</td>
<td>16.6</td>
<td>1.4</td>
</tr>
<tr>
<td>P7 : Loamy Lithic Haplustepts (Moderately steeply sloping pediments, 15-30% slope)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-13</td>
<td>59.0</td>
<td>19.5</td>
<td>21.5</td>
<td>1.4</td>
</tr>
<tr>
<td>13-33</td>
<td>54.9</td>
<td>24.0</td>
<td>21.1</td>
<td>1.5</td>
</tr>
</tbody>
</table>

On moderately sloping pediment (P5) had the highest Ca content followed by soils over very gently sloping pediment (P2). In general, these cations increased with depth. The cation exchange capacity (CEC) varied from 14.65 (P3) to 31.38 (P5) cmol (p+) kg$^{-1}$ soil and increased with depth (Table 3). Giri et al. (1993) also reported similar findings in alluvial fan region of Ghaggar river. There was no definite relationship between CEC and landform.
Table 3. Chemical characteristics of the soils

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>pH (1:2.5)</th>
<th>EC (1:2.5)</th>
<th>CaCO₃ (%)</th>
<th>O. C. (%)</th>
<th>Exchangeable bases</th>
<th>CEC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Na⁺</td>
<td>K⁺</td>
</tr>
<tr>
<td>P1: Coarse- loamy Typic Ustifluvent (Nearly level land, 0-1% slope)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-23</td>
<td>7.2</td>
<td>0.3</td>
<td>0.2</td>
<td>1.1</td>
<td>1.8</td>
<td>0.5</td>
</tr>
<tr>
<td>23-40</td>
<td>7.2</td>
<td>0.3</td>
<td>0.7</td>
<td>0.6</td>
<td>1.5</td>
<td>0.5</td>
</tr>
<tr>
<td>40-62</td>
<td>8.2</td>
<td>0.2</td>
<td>0.7</td>
<td>0.5</td>
<td>1.5</td>
<td>0.4</td>
</tr>
<tr>
<td>62-82</td>
<td>7.7</td>
<td>0.3</td>
<td>0.7</td>
<td>0.4</td>
<td>1.9</td>
<td>0.3</td>
</tr>
<tr>
<td>82-110</td>
<td>7.4</td>
<td>0.3</td>
<td>0.8</td>
<td>0.5</td>
<td>1.4</td>
<td>0.3</td>
</tr>
<tr>
<td>110-150</td>
<td>7.5</td>
<td>0.3</td>
<td>0.6</td>
<td>0.4</td>
<td>1.8</td>
<td>0.3</td>
</tr>
<tr>
<td>P2: Coarse- loamy Fluvic Haplustept (Very gently sloping pediment, 1-3% slope)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-15</td>
<td>7.3</td>
<td>0.4</td>
<td>1.1</td>
<td>0.7</td>
<td>1.1</td>
<td>0.3</td>
</tr>
<tr>
<td>15-40</td>
<td>6.9</td>
<td>0.3</td>
<td>0.9</td>
<td>0.7</td>
<td>1.4</td>
<td>0.3</td>
</tr>
<tr>
<td>40-60</td>
<td>6.8</td>
<td>0.3</td>
<td>0.9</td>
<td>0.5</td>
<td>1.8</td>
<td>0.3</td>
</tr>
<tr>
<td>60-100</td>
<td>7.2</td>
<td>0.2</td>
<td>0.9</td>
<td>0.6</td>
<td>2.1</td>
<td>0.3</td>
</tr>
<tr>
<td>100-120</td>
<td>7.4</td>
<td>0.2</td>
<td>1.0</td>
<td>0.5</td>
<td>2.0</td>
<td>0.3</td>
</tr>
<tr>
<td>120-135</td>
<td>7.4</td>
<td>0.5</td>
<td>1.1</td>
<td>0.6</td>
<td>2.3</td>
<td>0.3</td>
</tr>
<tr>
<td>P3: Coarse- loamy Typic Haplustept (Gently sloping pediment, 3-8% slope)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-14</td>
<td>7.14</td>
<td>0.28</td>
<td>0.71</td>
<td>0.45</td>
<td>1.09</td>
<td>0.31</td>
</tr>
<tr>
<td>14-40</td>
<td>7.16</td>
<td>0.27</td>
<td>1.05</td>
<td>0.26</td>
<td>1.10</td>
<td>0.30</td>
</tr>
<tr>
<td>40-72</td>
<td>7.51</td>
<td>0.28</td>
<td>1.02</td>
<td>0.24</td>
<td>1.22</td>
<td>0.29</td>
</tr>
<tr>
<td>72-97</td>
<td>7.77</td>
<td>0.21</td>
<td>1.09</td>
<td>0.21</td>
<td>1.54</td>
<td>0.28</td>
</tr>
<tr>
<td>97-120</td>
<td>7.85</td>
<td>0.21</td>
<td>1.43</td>
<td>0.31</td>
<td>1.48</td>
<td>0.27</td>
</tr>
<tr>
<td>120-150</td>
<td>8.25</td>
<td>0.21</td>
<td>1.33</td>
<td>0.26</td>
<td>1.39</td>
<td>0.32</td>
</tr>
<tr>
<td>P4: Loamy- skeletal, Lithic Ustorthent (Moderately sloping pediments, 8-15% slope)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-30</td>
<td>7.13</td>
<td>0.27</td>
<td>0.71</td>
<td>0.73</td>
<td>0.99</td>
<td>0.32</td>
</tr>
<tr>
<td>P5: Loamy Lithic Haplustept (Moderately sloping pediments, 8-15% slope)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-22</td>
<td>7.1</td>
<td>0.2</td>
<td>1.0</td>
<td>0.9</td>
<td>1.3</td>
<td>0.4</td>
</tr>
<tr>
<td>22-45</td>
<td>7.2</td>
<td>0.2</td>
<td>1.0</td>
<td>0.8</td>
<td>1.4</td>
<td>0.3</td>
</tr>
<tr>
<td>P6: Fine- loamy Typic Haplustept, (Moderately sloping pediments, 8-15% slope)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-22</td>
<td>6.8</td>
<td>0.3</td>
<td>0.8</td>
<td>1.2</td>
<td>1.7</td>
<td>0.3</td>
</tr>
<tr>
<td>22-52</td>
<td>6.7</td>
<td>0.3</td>
<td>0.7</td>
<td>0.9</td>
<td>1.5</td>
<td>0.3</td>
</tr>
<tr>
<td>P7: Loamy Lithic Haplustept (Moderate steeply sloping pediments, 15-30% slope)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-13</td>
<td>7.5</td>
<td>0.3</td>
<td>1.0</td>
<td>1.1</td>
<td>1.6</td>
<td>0.4</td>
</tr>
<tr>
<td>13-33</td>
<td>7.7</td>
<td>0.3</td>
<td>1.0</td>
<td>0.7</td>
<td>1.9</td>
<td>0.3</td>
</tr>
</tbody>
</table>

References

Received: August 2011 Accepted: February 2012