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Introduction 

Abstract : Data on hydraulic properties of soils are often not available. Hence, 

pedotransfer functions (PTFs) are used to estimate hydraulic properties of soils. PTFs 

formulate a relationship between basic soil properties and property of interest (mostly any 

hydraulic property). Little information is available on the hydraulic properties of clay soils 

that are impounded by water for the entire monsoon season (known as 'HaveJi') in large 

tracts of Madhya Pradesh. This study was conducted to calibrate and evaluate PTFs to 

predict saturated hydraulic conduCtivity (K,) using basic soil properties. Global PTF 

'Rosetta' was also eva1uated fcir'its validity in predicting Ks of the 'Haveli' soils. Available 

data on the 'Haveli' sods was used for the analysis. It included information on particle-size 

distribution, bulk density and water retention characteristics. PTFs were calibrated using 

regression as well as artificial neural networks. Imprecise estimates of Ks indicated that the 

calibrated PTFs were not reliable. However, excluding the samples with unusually low 

field capacity «0.3 m3 m·3
) despite clay content (> 50%) resulted in PTFs that performed 

with precision. Estimates of Ks obtained by implementing hierarchical rules in generic PTF 

'Rosetta' were poor in precision but improved with inclusion of field capacity and 

permanent wilting point as predictor variables. The. study indicated limitations of 

calibrated as well as generic PTFs in predicting saturated hydraulic conductivity. 

Additional key words: Pedotransfer functions, artificial neural network, saturated 

hydraulic condu.ctivity, clay soils, Rosetta 

Simulation of water flow through the vadose zone 

requires information on hydraulic properties of soils. 

Saturated hydraulic conductivity is one of the two soil 

.properties (the other .being water retention 

characteristics), which is vital to any such simulation. 

Soil hydraulic properties are usually measured in 

laboratory. The procedure is, however, complex and time

consuming. Because of the considerable spatial 

variability in soil hydraulic properties, field and 

laboratory observations often exhibit high levels of 

uncertainty (Kutilek and Nielsen 1994). Discrepancies are 

known to occur between laboratory and field 

measurements (Ratliff et al. 1983). In attempts to 

alleviate these problems and to estimate soil hydraulic 

properties from easily obtainable soil information, such 

as, particle-size distribution, bulk density, organic carbon 

content, etc, many authors (Cosby et al. 1984; Jain et al. 

2004; Rawls and Brakensiek 1983; Leij et ai. 2002; 

Saxton et al. 1986; van Genuchten 1992; Veerecken et at. 

1990) have used pedotransfer functions (PTFs). Schaap 

and Leij (1998) and Wosten et al. (2001) have disc~ssed 

the accuracy and reliability of PTFs. Schaap and Leij 

(1998) found that the performance of PTFs may strongly 
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depend on the calibration and evaluation of data sets. 

PTFs could be developed using different techniques 

(Wosten et al. 200 I) like regression (Rawls and 

Brakensiek 1985; Wosten et af. 1995) and artificial 

neural networks (ANNs) (Jain et al. 2004; Minasny et at 

1999; Minasny and McBratney 2002; Pachepsky et at. 
1996; Schaap et at. 1998). Schaap et at. (1998) developed 

an ANN-based PTF which reportedly performed better 

than four published PTFs in estimating water retention 

data and six published PTFs in estimating the saturated 

hydraulic conductivity. They used a dataset of 4515 

samples in the USA. Later, Schaap et al. (2001) 

developed ANN-based computer code, 'Rosetta' (public 

domain) which implements hierarchical PTFs for the 

estimation of water retention and the saturated and 

unsaturated hydraulic conductivity. The dataset used for 

calibrating Rosetta was derived from soils in temperate to 

subtropical climates of North America and Europe. These 

studies have shown effectiveness of ANN in prediction of 

hydraulic properties, However, it must be noted that the 

PTFs were based on large datasets. 

Little is known about the predictive quality of 

generic PTFs when employed to predict hydrauhc 

characteristics of problematic soils. A study by Nemes et 

ai. (2003) indicated that the PTFs developed at one scale 

(regional, national, continental) may not be suitable at 

other scales. In their study, PTFs derived from a small 

local database, were shown to perform better than large 

but general database. Romano and Palladino (2002) 

examined the prediction of soil hydraulic properties from 

soil physical properties and terrain information. Their 

work showed that the use of PTFs was not advisable if 

the scale varied. Recent publications focus on comparing 

PTF predictions with independent data sets of hydraul ic 

properties measured in the laboratory. Some publications 

indicate good agreement (Cornelius et al. 2001; Rawls et 

al. 2001; Wagner et al. 200 I) or moderate agreement 

(Givi et at. 2004) whereas few discrepancies are also 

reported (Chen and Payne 2001; Pachepsky and Rawls 

2003; Soet and Stricker 2003). 

N. G. Patil et ai. 

Limited information is available related to validity 

of generic PTFs or calibrated PTFs in estimating Ks at 

small or field scale for seasonally impounded soils. Low 

hydraulic conductivity of these soils is attributed to high 

clay content that impedes drainage causing impounding 

of water. It is. however, not known to what extent clay 

content affects the Ks and whether generic PTFs, to 

predict Ks, could be validated. Further, most of the 

reponed PTFs were developed to predict soil water 

retention and PTFs to predict Ks are relatively few. This 

study was conducted to calibrate regression and neural 

PTFs at a field scale using basic soil data including 

particle-size distribution, bulk density, field capacity (soil 

water retained at 33 kPa) and permanent wilting point 

(soil water retained at 1500 kPa), determine the best 

combination of inputs for prediction and comparing the 

performance of the field-scale PTF with the published 

neural PTF 'Rosetta.' 

Materials and Methods 

Study Area 

The study area IS located in Jabalpur district of 

Madhya Pradesh. The district lies between 22"49' and 

24"80' N latitude and 78"2 I' and 80"58' E longitude. The 

starting point of this analysis was the database on 

'Haveli' soils (PatH 2006). It contained data on basic soil 

properties, i.e. textural composition, dry bulk density, 

nine point soil water retention data and saturated 

hydraulic conductivity values for 41 soil profiles (175 

horizons). The 'Haveli' tract derives its name from the 

ingenuous system of impounding water during the rainfa!! 

season and using it during the winter (rab;) season. It 

occupies nearly 5 M ha area which accounts for 50% area 

of Jabalpur district (Rajput et al. 2004). The tract 

receives, on an average, 1300-1500 mm rainfall mostly 

during rainy season. The soils of the area are mainly 

clayey and classified as Vertisols and associated soils 

(Tomar et at. 1996). Low infiltration rate (poor vertical 

drainage) of the soils combined with plain topography 

(poor horizontal drainage) and high amount of rainfall 

received in relatively short period of time make the 

agricultural lands inundated. 
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Calibration of PTFs 

PTFs were calibrated using statistical regression and 

neural network tools~ Two computer codes, namely, 

'Neurointel!igence' (eval~ation version) developed by 

Alyuda Inc. and 'Neuropath' (version 1.2) developed by 

Minasny and McBratney (2002) of Australian Centre for 

Precision Agriculture were used in this study for 

calibrating neural PTFs. Code 'Neurointelligence' 

provides choice of many types of possible neural 

networks. According to Maier and Dandy (2000), feed

forward neural networks (FF-NNs) are the most widely 

adopted network architecture for the prediction and 

forecasting of geophysical variables. A rare use of radial

based function was seen in the literature. Hence, feed 

forward network was selected. Typical FF-NN consists'of 

three layers-an input layer, hidden layer, and output layer. 

The number of nodes in an input layer corresponds to the 

number of inputs considered for the PTF. The input layer 

is connected to the hidden layer with weights that 

determine the strength of the connections. The hidden 

layer nodes consist of the acti vation function, which helps 

in non-linearly transforming the inputs into linearly 

separable form. Often sigmoidal or hyperbolic tangent 

transfer function that provides a graded, non-linear 

response is used by the researchers. Hidden layer 

provides the network's non-linear modeling capabilities. 

As a general rule, the total hidden units should be half the 

number of units. Thus, in the present analysis, maximum 

inputs being seven, 3-4 hidden units were believed to 

serve the purpose. However, the search for a good 

network invariably. yielded a single layer 'network with 

two hidden units. For hidden layer activation, hyperbolic 

tangent function was used because of its reported ability 

to perform better than logistic function. For output, the 

logistic function performed well. The hyperbolic tangent 

function has restrictions in that it can only be used on 

network with a single output unit, for small network, and 

it is meant for the sum squared error function and hence 

is appropriate only for regression problems. !he data was 

bisected into training and testing sets.' For training, 

Levenberg-Marquardt (L-M) algorithm was chosen due to 

the fact that the data is small. Mayr and Jarvis (1999), van 

Genuchten et al. (1992) and other researchers have used 
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the same algorithm to develop PTFs. Further. for fair 

comparison' between regression and ANN models, it was 

desirable to seek minimization of sum of squares error. It 

is also the fastest algorithm available for multi-layer 

perceptrons. The data was partitioned as 68% (71 

horizons) for training, 16% (16 horizons) for validating 

and testing each. Another ANN computer code, 

Neuropath, is a si~gle layer network that uses hyperbolic 

tangent function and feeds forward network. For 

validation, neuropath makes use of bootstrap i.e. a copy 

of validation sample remains in the training set. 

Neuropath performance was observed to be better with 

4-6 hidden units. 

The neural network typically consists of T input 

'neurons, 'k' hidden neurons, and 'l' output neurons. 

Symbolically, the ANN architecture shown in fig. 1 can 

be represented as ANN U,k,l). 

Sand 

Silt 

Clay 

Bulkdensity 

Bias 

Fig.l A typical neural network with input neurons of sand, 
sil I, clay and bulk density relating to output neuron
saturated hydraulic conductivity. 

A systematic search of different network configura

tions and user-adjustable parameters, was performed to 

obtain the optimal network architecture, while minimizing 

the cost function. The network architecture was chosen 

based on the least cost function criteria (minimizing mean 

sum of squares of the network errors). 
n 

MSE = 1/ n ·I.(Yi - Y; ,)2 (2) 
i~l 



50 

where, y, and Yi' stand for measured and estimated value 

and n is the number of trainings. ANN model is 

developed in two steps - 1) training and 2) testing. In 

training process, connection weights between different 

layers and the bias values of the neural network were 

optimized by minimizing the cost function. 

Four levels of available information were classified 

for the study. 

• Input level 1 

• Input level 2 

• Input level 3 

• Input level 4 

Sand, silt, and clay content (SSC) 

Levell + bulk density data (SSCBD) 

Level 2 + field capacity (SSCBDFC) 

Level 3 + permanent wilting point 

(SSCBDFCPWP) 

These four input sets were related by regression and 

neural network to K, resulting in four PTFs to estimate 

K,. 

Performance Evaluation 

The performances of the PTFs were evaluated based 

on (i) root mean square error (RMSE), (ii) index of 

agreement (d), (iii) maximum absolute error (ME) and iv) 

mean absolute error (MAE). RMSE, d, ME, and MAE 

statistics were calculated using following equations, 

respecti vel y, where n represents the number of data used 

for modeling and E; and M; represent measured and 

computed value, respectively. The units of errors are 

same as that ofK,. i.e. Lrr. 

It 

2)Ei Mi)~ 
Root Mean Square Error RMSE i~1 

n 
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The RMSE statistic indicates the model's ability to 

predict away from the mean. RMSE imparts more weight 

to high values because it involves square of the difference 

between observed and predicted values. Ideally, the 

model should have the smallest MAE and smallest overall 

dispersion (RMSE). The units of error in this paper are 

cm d'i. RMSE was applied as a primary indicator of 

model precIsion, whereas other indicators were 

secondary. When the measured K, values are used for 

developing equation and correspondence between 

measured and predicted values is tested, it indicates 

goodness of fit or 'accuracy' of the equation. Thus, when 

neural networks were trained, they were first tested for 

their ability to represent the same data used for training 

dataset (accuracy) and then evaluated for 'reliability' by 

using independent dataset (outside the training dataset). 

Thus, when the measured values are different (the 

estimates are obtained using other properties) from the 

ones used for developing equation, correspondence 

between measured and estimated values indicates 

'reliability' of the equation, 

Results and Discussion 

Analysis of the soil samples indicated that 103 out 

of 175 horizons had clay texture (USDA classification). 

Clay loam and sandy clay loam textures was observed in 

18 and 22 horizons, respectively. These three textures 

constituted 82 % of the entire dataset. Rest of the 32 

(3) 

horizons were dispersed over other textural 

classes. Analysis discussed here pertains to clay 

texture. Statistical summary of soil properties is 

presented in table lea). Coefficient of uniformity 

indicates that the variation in clay content of the 

samples was relatively low, mean being 53.47%. 

Sand content varied to a greater extent and 

Index of Agreement d = 1-__ ..:.i=...:.I ______ (4) 

t~Ei-MI+IMi-Mly 
variation of similar magnitude was noted in 

saturated hydraulic conductivity data. In general, 

soils were low in organic carbon content as 
;=1 

Maximum Absolute Error ME = MaxlEi - Mil 

Mean Absolute Error MAE 
11 lEi-Mil 
L 11 
;=1 

(5) 

(6) 

shown by mean per cent (0.28). Correlation 

matrix of soil properties (Table I b) shows 

negative relationship between K, and clay. High 

bulk density (mean 1.44 Mg m") showed the 

strongest negative relationship with K, followed 
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Table l(a). Statistical summary of soil properties of 'Haveli' tract 

Statistic Sand Silt Clay BD OC FC PWP Ks 
(%) (%) m·3) (%) . (m3m<l) (m'm-3) (cm d· l

) 

Mean 20.50 25.52 53.47 1.44 0.28 0.32 0.16 15.02 

SE 0.87 0.54 0.86 0.01 0.015 0.00 0.00 0.57 

SD B.82 5.46 8.74 0.12 0.12 0.04 0.03 5.82 

Variance 77.72 29.76 76.45 0.02 O.OIB 0.00 0.00 33.90 

CV 0.43 0.21 0.16 0:09 0.428 0.13 0.19 0.39 

Minimum 3.12 8.04 40.50 1.20 0.15 0.22 0.08 3.12 

Maximum 36.70 39.11 71.50 1.73 0.5 0.40 0.24 25.92 

BD-bulk density, FC-field capacity, PWP'permanent wilting point, Kg-saturated hydraulic conductivity, SE-standard error, 

SD-standard deviation, CV -coefficient of variation 

Table l(b). Correlation matrix of soil properties 

Sand 
Silt -0.3\ ** .. 
Clay -0.81 ** -0.3** 

BD -0.3** . -0.17 0.41 ** 
FC -0.56** 0.29* 0.39** 
PWP -0.51 ** 0.2 0.41** 
K, 0.32** 0.07 -0.36** 

"'significant at p<O.OS, ** at p <0.01 

0.14 

0.41*~ 

-0.6** 
0.64** 
-0.16 

1 
-0.22 

Table 2. Regression PTFs to estimate saturated hydraulic conductivity 

PTF Input level 

K, =-9.50369+0.225644 *Sand+O.I77611 ~:Si1t-:1-0, 123012 *Clay 

K, =.232089+0. 1 67218*Sand+0. I 22096*Silt+0. 128874*Clay-IO.7378*B D 2 
, . 

K, =9.375558+o.158644*Sand+0.11829s*Silt+0.122676*Clay-1O.82~~*BD -1.00354*FC 3 

Ks =21.93144+0.052977*Sand+0.OO767*Silt+0.012036*Clay-12.,1265*BD -
4 6.5644*FC+ 13.77 544*PWP 

by PWP and FC in that order. The relationship with sand 

was strongly positive. The sets of calibrated regression 

equations (PTFs) are presented in table 2. 

Accuracy (fitting to the measured/observed data) 

and reliability (ability to predict data) of the' rriodelsw~re . 

judged using the statistical indices (,statistic ') .. 1\1 

accuracy testing, not withstanding input level, RMSE 

(Table 3) tended to be high though at higher input le~el~' 
(3 and 4), marked improvement could be observed. It 

ranged from 0.88 to 1.77 for the relatively accurate PTFs 
(by 'Neuropath'). The range for regression arid 

'Neurointelligence' was 1.87 to 2.25 and 1.29 to 2.26, 

respectively. The highest mean absolute error and. mean 

thor were observed in predictions by regression PTFs 

(R). Magnitude of these errors was relatively low in Al 

followed by A2. The degree of agre~rnent values also 

indicated that the neural PTF predictions were closer to 

the measured data than the regression PTF estimates. The 

best agreement (0.96) was observed in A2 PTFs, when 

tested for accuracy. However, all these indices showed 

tenfold or more increase, when 'reliability' was 

evaluated. In general, PTFs developed by 'Neuropath' 
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Table 3. Evaluation indices denoting 'accuracy' and 'reliability' of the calibrated PTFs in predicting saturated 

hydraulic conductivity 

Input 
2 3 4 

Index Method ACCU REL ACCU REL ACCU REL ACCU REL 

R 2.25 12.88 1.88 64.09 1.88 65.63 1.87 67.67 

RMSE Ai 2.26 2.12 1.47 1.68 1.29 1.58 2.21 1.72 

A2 1.77 6.61 1.41 6.54 0.88 6.73 1.03 6.58 

R 1.81 12.48 1.53 61.55 1.53 63.00 1.52 64.42 

MAE Al 1.86 1.82 1.17 1.36 0.98 1.16 1.57 1.29 

A2 1.47 6.22 0.96 6.17 0.65 6.30 0.69 6.16 

R 5.23 16.71 4.45 88.17 4.39 90.39 4.32 96.53 

ME Al 5.10 3.36 3.91 3.20 5.15 3.57 7.94 3.58 

A2 4.31 9.96 6.54 10.04 3.40 10.02 4.70 10.09 

R 0.50 0.21 0.75 0.05 0.75 0.05 0.75 0.05 

D Al 0.42 0.50 0.87 0.81 0.91 0.84 0.76 0.81 

A2 0.77 0.35 0.91 0.36 0.96 0.34 0.95 0.35 

R.regression. Al·Neurointelligence, A2·Neuropath, ACCU·Accuracy, REL·Reliability 

fitted better than others with a tendency to underestimate 

at input levels I. 3 and 4 and overestimate at level 2. 

However. in reliability testing. irrespective of the input 

levels though, PTFs developed using 'Neurointelligence' 

were comparatively better, the errors were large and 

unacceptable. Thus. ]10 PTF could be identified for 

application/utility. 

Estimates of K, obtained by hierarchical input in 

'Rosetta' were also evaluated with the same set of 

statistical indices. Again, irrespective of input used, the 

error component (Table 4) in estimates was large 

warranting rejection. A clear pattern of improvement in 

predictions with increase in input was discernible as 

RMSE and MAE decreased from 8.83 and 7.17 to 5.58 

and 0.83, respectively. Mean error (ME) decreased in the 

input level 2, but increased for level 3 before decreasing 

again for level 4. Thus, even with maximum input, the 

predictions as indicated by mean error, were not better 

than predictions with minimum input. 

While the modeling efforts using regression and 

ANN tools failed to formulate the PTF for estimating 

saturated hydraulic conductivity, we felt that the 

hydraulic behaviour of these soils differ from other clay 

soils because of the unique hydromorphic environment 

caused by continuous ponding of water over unknown 

years (it is said to be a 50 years old practice but there are 

no records to substantiate). We then screened soil 

samples with field capacity < 0.3 m3/m 3 and excluded 

Table 4. Evaluation indices denoting 'reliability' of the PTF 'Rosetta' in predicting saturated 

hydraulic conductivity 

Input 1 2 3 4 

RMSE 8.83 8.31 7.84 5.58 
MAE 7.17 7.02 4.71 0.83 

ME 17.23 16.68 26.54 17.61 
d 0.30 0.62 0.76 0.83 
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T'lble 5. Evaluation indices denoting 'reliability' of the PTF 'Rosetta' in predicting saturated hydraulic 

conductivity otscreenedsamples 

1 2 

RMSE 7.64 8.24 

d 0048 0.59 
MAE 5.93 7.08 
ME 16.99 16.56 

from analysis. A total of six profiles (profile no. 5,6, 8,9, 

12 and 31) were found to constitute 21 of the 28 horizons 

that had lower « 0.3 m3m'3) field capacity. All these 

profiles were within 500 m distance from the river and 

are exposed to greater period of waterlogging every year. 

We feel that the aggregation that would have otherwise 

occurred was prohibited by the longer period of ponding 

and it led to change in hydraulic behaviour. Further, these 

soil samples had mean sand content 25.60%, silt 22.26% 

and clay content 5l.79 %. The increase in sand and silt 

contents and reduction in clay content along with Jess 

bulk density could also explain less water retention. Mean 

Ks also increased to 15044 as against 15.0 I cm d'l. With 

the new dataset, there was a marked improvement in 

RMSE (Table 5), especially for input level 3 and 4. 

Graphical presentation of these results is 

made in figures 2 and 3, which shows an improving trend 

with the increasing input. With inputs of texture, bulk 

3 4 

2.67 0.17 
0.96 0.99 
1.63 0.13 
9.51 0042 

density, field capacity and permanent wilting point, 

excellent agreement was noted in measured and predicted 

Ks. Use of FC and especially PWP with the other soil 

physical properties (in the PTF models) increased 

precision of predicted Ks. It may be attributed to the fact 

that soil moisture constants in water retention curve 

provide more information about soil pore structure than 

texture and bulk density. Other indices also showed 

improvement and possible validity of 'Rosetta'. Soil 

structure in sandy soils is dominantly single grained. 

Substantial difference in Ks, due to soil structure is, 

therefore, unlikely in sandy soils. Nevertheless, soil 

structure in clay soil can be blocky, which in addition to 

soil texture, can introduce substantial difference in Ks 
estimates. Similarly, the PTF evaluation using screened 

samples indicated an improving trend with increase in 

input variables. The error values shown in Table 6 imply 

that the calibrated PTFs were reliable (RMSE, MAE, ME 

Table 6. Evaluation indices denoting 'accuracy' and 'reliability' of the calibrated PTFs in predicting saturated 

hydraulic conductivity of screened samples 

2 3 4 

Index Method ACCU REL ACCU REL ACCU REL ACCU REL 

R 2.31 3.02 1.81 2.18 1.67 2.03 1.68 0.59 

RMSE Al 2.06 2.87 1.77 1.98 1.85 1.92 0.13 0.12 
A2 2.1 2.95 1.89 2.04 1.58 1.99 0.63 0048 
R 1.91 2.7 1.51 1.9 1.42 1.82 0.88 0.91 

MAE Al 1.75 2.38 1.35 1.64 1.29 1.54 0.32 0.25 
A2 1.86 2.35 1.42 1.71 1.34 1.68 0044 0.58 
R 5 4.67 4.23 4.23 4.1 3.25 4.01 0.44 

ME Al 4.5 4.8 3.95 4.05 3.85 3.11 3.68 0.17 
A2 4.82 404 4.1 4.17 4.12 3.21 3.85 0.28 
R 0.28 00405 0.72 0.7 0.78 0.78 0.78 0.77 

d Al 0.5 0.38 0.78 0.7 0.8 0.77 0.82 0.81 

A2 0.48 0.29 0.72 0.61 0.77 0.65 0.74 0.78 
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Fig. 3. Measured and predicted saturated hydraulic conductivity (cm d· l
) using texture, bulk density, and field 

capacity (a), and texture, bulk density, field capacity and permanent wilting point (b) as an input in 'Rosetta' 

und d being 0.12, 0.25, 0.17 and 0.81, respectively at 

highest input level), when neural PTFs developed by 

using Ai were assessed. PTFs developed by the 

regression method performed poorly with lowest 

accuracy and reliability. The improvement with inclusion 

of FCand PWP as predictor variables was again 

conspicuous as the error (RMSE, MAE and ME) showed 

reducing trend with increase in input, whereas the degree 

of agreement increased. However, the reason for low 

water retention despite high clay content and inability to 

model K, for the excluded data warrants further 

investigations. Possible variation in clay mineralogy was 

ruled out as it was identical for the region. It may be 

noted that the input requirement was greater for 

acceptable PTFs. Soil data on texture, bulk density and 

field capacity were necessary for acceptable estimates. 

We infer that the 'Haveli' tract should further be divided 

into two units based on period of impounding and more 

data need to be collected for further investigations. 
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Conclusion 

Prediction of saturated "hydraulic.conductivity using 

PTFs is limited by their (PTFs') inabi.\ity to mimic 

behaviour of impounded soils, irrespective of tools used 

to calibrate PTFs. Applicability of generic PTF 'Rosetta' 

was· observed to be limited. However, improved· 

performance of calibrated PTFs. after screening the 

samples for field capacity (>0.3 .m3m·3
) imply that the 

proposed PTFs could be used as a primary tool of 

prediction ilnd refined further by widening the database 

and investigating influence of soil variables that directly 

affect saturated hydraulic conducti vity. 
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