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Abstract: A study was conducted to determine the spatial variability of pH, electrical
conductivity, organic carbon, available macro and micronutrients in Palani block,
Dindigul district representing Tamil Nadu uplands of semi-arid southern India. A
total of 119 geo-referenced surface soil samples were collected based on landscape
ecological units. The soils varied from very strongly acidic (pH 4.57) to strongly
alkaline (pH 8.74) and were non-saline (EC<0.60dS m™). Soil pH had the lowest
coefficient of variation (CV=17%), whereas, other parameters were high in CV.
Experimental semi-variograms were fitted for different models like circular,
spherical, exponential, gaussian and stable to map the spatial variability. Among the
models, exponential model was best fitted for pH, OC, available P, Fe and Mn;
circular model for available K and EC; and Gaussian model for Cu and Zn using
weighted least square. The models with minimal RMSE were considered as the best
cross-validation results. The Nugget-sill ratio indicated a moderate degree of spatial
dependence (0.25-0.75) for EC, soil organic carbon, available P and K, and strong
degree of spatial dependence (<0.25) for soil pH, available Fe, Cu, Mn and Zn. The
spatial variability information on soil nutrients will help the farmers in sustainable
nutrient management.
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Introduction

Soil variability is an essential criterion to assess
soil nutrient status and to identify the similar
management units for better fertility management
(Sawant et al. 2018). Soils of the semi-arid tropics have
limitations of nutrient losses and high soil erosion

(Prabhavathi et al/. 2013) which leads to uneven
distribution of soil fertility and therefore, affects crop
growth. Spatial variability of soil properties is the result
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of complex interactions between geology, climate,
topography, land use, and management (Shi ez al. 2007).
Spatial variability of soil properties can be effectively
assessed by geo-statistical methods such as kriging
interpolation (Reza et al. 2017). The kriging
interpolation technique predicts the soil properties by
spatial auto-correlation and reduces variance of
estimation error (Saito et al. 2005). Ordinary kriging is
the most commonly used kriging in practice due to its
better performance over other techniques (Hegde et al.
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2018) and it provides variability estimates of soil
properties using variogram models (Pravat ez al. 2016).
The study was carried-out to assess the spatial
variability of soil fertility parameters for sustainable
nutrient management through geo-statistical methods.

Materials and Methods
Study area

The study was carried out in Palani block
(77°18'50”t0 77°37'17” E; 10°21'18” to 10°32'27” N) of
Dindigul district of Tamil Nadu and covers an area of
39,960 ha. The mean annual rainfall is 760 mm and the
length of growing period (LGP) ranges from 90-120
days. Major contribution of rainfall is received from
North east monsoon (600 mm) than south west monsoon
(200 mm). The soils of the study area belong to Alfisols
(43%) and Inceptisols (30%) orders.

Soil sampling and analysis

A total of 119 geo-referenced composite soil
samples were collected from surface soil layers (0-15
cm depth) based on landscape ecological units. Soil
samples were processed and analyzed for pH and
electrical conductivity in 1:2.5 soil: water suspension
(Piper 1966). Organic carbon was estimated by Walkley
and Black method (Walkley and Black 1934). The
available P content of neutral and alkaline soils was
estimated by Olsen method (Olsen et al. 1954) and for
acidic soils, it was estimated by Bray method (Bray and
Kurtz 1945). Available potassium was extracted using
neutral normal ammonium acetate and measured with
flame photometer (Jackson 1973). DTPA extractable
available micronutrient (Fe, Zn, Cu and Mn) were
measured in Atomic Absorption Spectrometer (Lindsay
and Norvell 1978).

Statistical and geo-statistical analysis

The descriptive statistics of the soil properties
viz., mean, minimum, maximum, standard deviation,
co-efficient of variation, skewness and kurtosis were
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analyzed. The relationship between the soil properties
was determined using Pearson's correlation matrix in
SPSS software. Spatial distribution maps of the soil
properties were prepared using interpolation techniques
in ArcGIS. The ordinary kriging interpolation technique
was used to estimate the spatial variability of the soil
properties by fitting semi-variograms which can explain
the spatial structure of the soil properties (Nielsen and
Wendroth 2003). The calculation of semi-variograms is
expressed as,

N(h)

1
(W) = 3508 Z [2(xi — 8(xi)]?

Where z (xi) is the value of the variable z at
location of xi, h the lag, and N (h) the number of pairs of
sample points separated by h.

Semi-variograms were fitted using different
standard models viz. circular, spherical, exponential
gaussian and stable models (Shi ez al. 2007). Expression
for different semi-variogram models used in this study is
given below:

Exponential model:

r(h) =Co+C1 [1 - exp{—g}] forh=o

Spherical model:
h h
r(h) = Co +C1 [1.55— 0.5(5)3],0 < h <=Co+Cl

Gaussian model:

r(h) =Co+C1 [1 - exp{—%}] forh=o
The parameters of semi-variogram like Nugget (C0) and
Sill (CO + C) were used to characterize the spatial
dependency. Nugget (C0) explains the micro-scale
variability, whereas partial sill indicates the amount of
variability which could be defined by spatial correlation
structure. The ratio of nugget and sill (nugget/sill) was
used to define spatial dependency of the soil properties
like strong spatial dependency (<0.25), moderate (0.25-
0.75) and weak (>0.75) (Cambardella et al. 1994).
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Fig. 1 (a-h): Semi-variograms of best fitted theoretical models based on RMSE

Cross validation

The performance of the interpolation technique
used to prepare spatial variability maps was evaluated by
cross validation technique. The uncertainty estimates
like Root mean square error (RMSE), Mean
standardized error (MSE), Root mean square
standardized error (RMSSE) and Average standardized
error (ASE) were used to evaluate the performance.
Smaller RMSE and MSE values indicate minimal errors
and bias. The models with minimal RMSE were
considered as best fit models.

Best-fitted models with minimum root mean
square error (RMSE) were selected for each soil
nutrients:

RMSE = \/Z [z(xi — 2(x1)]?

MSE =1- z D

n
1
RMSSE = EZ( 2(x;))
i=1
n
ASE = 12 2(xi)
= |n. 10 xi
i=

Where, z (xi) is the observed value, Z (xi) is the
predicted value, N is the number of values in dataset and
o’ is the kriging variance for location xi.

Results and Discussion

Descriptive statistics of the soil properties and their
relationship

The descriptive statistics indicated considerable
variability in soil properties (Table 1). The mean values
of EC, OC, available P, K, Cu, Fe, Mn and Zn are 0.15 dS
m”, 0.47%, 28.8 kg ha", 208 kg ha", 1.46 mg kg, 19.7
mgkg', 9.0 mg kg and 0.4 mg kg, respectively. The
possible reason for variable nutrients could be
pedogenic process, parent material, fertilizers use, land
use types, and management (Shukla et al. 2016). The
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co-efficient of variation for soil properties ranged from
17 and 126%. The order of CV is
Fe>Cu>Mn>EC>P>Zn>K>OC>pH. The co-efficient of
variation for the macro and micronutrients is high owing
to significant of variability in the soil. The skewness of

Table 1. Descriptive statistics of the soil properties

B. Kalaiselvi et al.

the soil properties varied from 0.02 to 2.46 which show
asymmetrical distribution of the soil properties due to
different soil fertility and crop management activities
(Behera et al. 2016). Pearson linear correlation matrix
expresses that OC has significantly positive relationship
with the available nutrient contents (Table 2).

Soil Minimum Maximum Mean SD CV% Skewness  Kurtosis
Properties
pH 4.57 8.74 - - 16.65 0.02 -1.12
EC (dSm™) 0.025 0.587 0.15 0.12 79.61 1.54 2.34
0OC (%) 0.03 1.43 0.47 0.27 56.64 1.07 1.12
P (kg ha™) 4 90 28.78 20.52 71.31 1.00 0.28
K (kg ha™) 37 474 208.0 133.6 64.20 1.66 431
Cu (mg kg™) 0.18 7.1 1.46 1.58 107.9 1.79 2.31
Fe (mg kg™) 0.84 1353 19.74 2491 126.2 2.46 6.55
Mn (mg kg™) 1.58 30.82 9.02 6.21 68.86 1.06 0.83
Zn (mg kg") 0.08 1.56 0.40 0.33 80.14 1.85 2.98
Table 2. Correlation coefficients among soil properties and their level of significance
pH EC 0C P Cu Fe Mn Zn
pH 1
EC 6237 1
ocC 3777 676" 1
P -5377 2165 .060 1
4817 3897 194" -215 1
Cu 096 4877 706" 071 -114 1
Fe 5247 L1134 158 2797 -4147 506 1
Mn 6737 23857 -180 448 -269” 013 3387 1
Zn 129 2847 4747 128 183" 4287 084 094 1

The pearson correlation matrix revealed a
significant positive relationship between pH and OC
(r=0.38, p<0.01). Except available P, Fe and Mn, soil
available nutrients showed highly significant positive
relationship with OC. The soil pH had significantly
negative relationship with available P (r=-0.54), Fe (r=-
0.52) and Mn (r=-0.67) but available phosphorus had

positive correlation with manganese (r=0.45) at 1%
significance.

Spatial variability and distribution of the soil properties

Spatial distribution of pH, EC, OC and available
macro and micronutrients using interpolation method
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has been depicted in fig. 2 a-i. Kriging technique helps to
derive the continuous spatial data from point
observations. The central part of the study area showed
medium to high range of OC content. The high OC
concentration of the surface soils are mainly influenced
by land use, climate, parent material and topography
(Pravat et al. 2016). Available phosphorus showed less
availability in south east part of the area where the pH
recorded high. This could be due to the fixation of the
phosphorus by calcium at alkaline pH. Available
potassium is high in central and southern part of the
study area. The variability in available K might be due to
erosion of top soil and fertilizer management
(Srinivasarao et al. 2014). The major reason for
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micronutrients deficiency is due to inappropriate
application of high analysis fertilizers and meager
quantity of application of micronutrients (Vasu et al.
2017).

Different models like circular, spherical,
exponential, gaussian, and stable were used to study the
variability of soil properties by fitting semi-variograms
having minimum RMSE. The analysis of isotropic
variogram showed different parameters (Nugget and
Sill) of semi-variograms for pH, EC, OC, available
macro and micronutrients (Table 3). The best fitted
model obtained from semi-variogram analysis was
exponential for pH, OC, available P, Fe and Mn,
Gaussian model for available Cu and Zn and Circular
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Fig. 2 (a-i): Spatial variability maps of soil pH, EC, OC, macro and micronutrients using geo-statistical interpolation techniques
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model for EC and available K. Nugget variance is caused
by sampling and experimental errors. The nuggets for
available P (232.5) and K (4541) are very high (nugget
effect) which might be due to the lack of optimal distance
sampling (too sparse sampling) (Hegde et al. 2018).
Some properties like manganese (Mn) shows zero
nugget effect which indicates the smooth continuity of
the soil properties over the distance and neighboring
points. The ratio between nugget and sill showed spatial
dependency of various soil properties. The soil pH,
available Fe, Cu, Mn and Zn were strongly spatial
dependent (N/S<0.25) whereas, the organic carbon,
electrical conductivity (EC), available P and K were
moderately dependent (N/S~0.25-0.75). Soil parameters
which are strongly spatial dependent (<0.25) are
influenced by parent material, climate, relief and other
soil forming factors (Vasu et al. 2017). Moderately
spatial dependent soil properties were influenced by
anthropogenic activities and natural process of soil
formation (Wang et al. 2013). For accurate prediction of
soil properties, systematic sampling and increased
sample size are the primary criteria than random
sampling (Wang and Qi1998).

Conclusions

The assessment of soil variability using geo-
statistical analysis showed that except pH, other soil
properties varied highly in the study area. Among the
models, exponential model was best fitted for pH, OC,
available P, Fe and Mn, Circular model for available K
and EC and Gaussian model for Cu and Zn using. The
soil pH and micronutrients showed strong spatial
dependency whereas; OC, EC, available P and K are
moderately spatial dependent. The variability of
moderately spatial dependent soil properties such as EC,
OC, Available P and K can be better managed by soil
fertility and land use management. The assessment of
variability and spatial dependency will help to identify
the soil units which require fertility and crop
management practices for sustainable crop production.

B. Kalaiselvi et al.
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