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Abstract: In the present study, the distribution of salinity was investigated using 

digital soil mapping (DSM) algorithms in the 5 km buffer zone of both sides of the 

Indira Gandhi Nahar Pariyojana (IGNP) canal system of Suratgarh tehsil in 

Rajasthan. To achieve this goal, 64 soil samples were used with 21 environmental 

covariates and 3 DSM algorithms. The result from the study showed that the 
-1

difference between the minimum and maximum EC  is very high (35.55dS m ) in the e

different irrigation zone of the IGNP canal system. The EC  ranged from 0.50 to 36.05 e
-1

dSm . Results indicated that the most important environmental covariates were 

annual precipitation, elevation and valley depth. Among the DSM algorithms, RF 

model showed the best performance in predicting EC  at the regional level. Results e
2

showed that the RF algorithm could predict EC  with an R , RMSE and MAE of e

0.701, 3.367 and 1.722, respectively. RF and QRF showed similar performance in 

predicting EC , while SVM showed lower efficiency than the other models in terms of e
2R  and prediction errors. The salinity prediction map shows that the vulnerability to 

soil salinity is high in the Anupgarh branch of the canal, and low in the IGNP main and 

Bikaner canal area. Furthermore, the model developed in this study provides 

comprehensive guidance for the land planners and decision-makers to develop 

amicable strategies for the management of the IGNP canal system.

Keywords: Digital soil mapping, soil salinity, spatial distribution, IGNP 
                   command area,arid ecosystem

Introduction

Soil salinization is a worldwide problem, 

particularly in arid and semiarid regions with low 

rainfall and high evapotranspiration. Soil salinization is 

increasing at an alarming rate, and it is recognized as a 

global environmental issue with reports from all over the 

world (Gorji et al. 2017). The high evaporation 

conditions that exist in arid regions cause a steady rise in 
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salt content in water sources as well as in the soil (Singh 

2015). In dry and semiarid regions, roughly 20% of 

irrigated land is salt-affected globally, and the land area 

with secondary soil salinization concerns might be as 

high as 80 Mha (million hectares) (Wang et al. 2018). Soil 

salinity and alkalinity impact 8.4 Mha in India alone, with 

roughly 5.5 Mha being waterlogged (Jaglan and Qureshi 

1996).The Indira Gandhi Nahar Pariyojana (IGNP) is one 

of the most ambitious surface irrigation projects which 



occupy the north-western and far western parts of the 

Thar Desert of Rajasthan. The irrigation network has 

converted barren deserts into rich and green farmland 

since its inception in 1960. Salinity development and 

waterlogging, on the other hand, have become severe 

issues in the IGNP command area. Secondary 

salinization and salt build-up have occurred as a result of 

high temperatures, the existence of excessive water-

soluble salts in soils, and a high rate of 

evapotranspiration. There have been several attempts to 

assess the extent and distribution of salt-affected soils in 

India. However, there is a paucity of data on the spatial 

prediction of soil salinity using a digital mapping 

methodology. As a result, in order to address these 

issues, an appropriate model for the spatial distribution 

of soil salinity must be evaluated.
Digital soil mapping (DSM) has now been 

widely used globally for mapping soil classes and 

properties (Arrouays et al. 2014). In particular, DSM has 

been used to map soil salinity efficiently around the 

world. DSM methodology has been adopted by FAO 

and ITPS (2020) so that digital soil maps can be 

produced reliably for sustainable land management. 

Mapping soil spatial variations by traditional field 

surveys are time-consuming and expensive, especially 

at national, regional or global scales (McBratney et al. 

2003; Minasny et al. 2013). Therefore, it is necessary to 

have robust methods and models to predict soil 

properties at a given location or scale. Considerable 

advances in remote sensing techniques and machine 

learning approaches have allowed accurate prediction of 

soil properties with new methods like digital soil 

mapping (McBratney et al. 2003; Hengl et al. 2015). In 

recent years, DSM techniques have been used to map 

soil properties using environmental variables. These 

methods were designed to overcome the limitations of 

the conventional soil mapping approach and to estimate 

soil properties based on relationships between soil and 

environmental variables obtained from terrain attributes 

and satellite imagery (McBratney et al. 2003; Minasny 

and Hartemink 2011). In India, ICAR-National Bureau 

of Soil Survey and Land Use Planning (ICAR-

NBSS&LUP), Nagpur has recently launched an 

ambitious program called “Indian Soil Grids” with the 

objective to develop soil properties map as per Global 

Soil Map specifications (Dharumarajan et al. 2019). 
As there is a lack of information about the spatial 

prediction of soil salinity in the IGNP command area of 

India, this study predicts the soil salinity spatially through 

the random forest (RF), quantile regression forest (QRF) 

and support vector machine (SVM) model techniques. 

The objectives of this study were to i) predictsoil salinity 

with different digital mapping models, (ii) evaluate the 

effectiveness of models, and (iii) identify the most 

important environmental variables controlling the spatial 

distribution of soil salinity in the IGNP command area of 

India. We expect that our outputs would improve and 

update the current soil salinity information system with 

new fine-resolution soil salinity maps that could be useful 

to end-users and stakeholders.

Materials and Methods

Study site

The study area lies between 28.903°N to 29.686° 

N latitude and 73.441°E to 74.218°E longitude located in 

Suratgarh tehsil of  Rajasthan, India covering 1,28,140 ha 

area (Fig. 1). This area has been irrigated by a canal 

network since the late 1960 sand about 70% of cultivable 

fields of the studied area are under irrigation (Jaglan and 

Qureshi 1996). The study area is irrigated by the IGNP 

main canal and its branches like the Bikaner lift canal and 

Anupgarh canal, respectively under the IGNP irrigation 

project. The area has very scanty and erratic rainfall with 

extremely hot summer and cold winter. The average 

rainfall of the area is 286 mm. The dominant soils are 

deep to very deep, either calcareous or non-calcareous in 

nature. Texture varied from loamy sandy to sandy loam 

with weak structure. The soil belongs to Typic 

Haplocambids (Shyampura et al. 2002). Cereal and 

legume-based cropping systems are practised for more 

than the last 60 years. Crops included in the rotations are 

mustard (Brassica juncea), moth bean (Vigna aconitifolia), 

cluster bean (Cyamopsis tetragonoloba), groundnut 

(Arachis hypogaea), chickpea (Cicer arietinum), wheat 
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(Triticum aestivum), green gram (Vigna radiata), pearl 

millet (Pennisetum glaucum) and cotton (Gossypium sp.). 

Soil sampling and analysis

Soil samples were collected in a 5 km buffer 

zone on both sides of the canal. Over 64 soil samples 

(arable layer) from different agricultural sites were 

collected during the period of March 2017. The 

geographical coordinates of the sampling points were 

recorded using a geographical positioning system 

(GPS). The samples were dried, ground and sieved with 

a 2.0 mm sieve and stored for analysis. The soil samples 

from different sites were analyzed for mechanical 

composition, pH, electric conductivity in the soil 

saturated paste extract (EC ), calcium carbonate e

(CaCO ), exchangeable cations (Exch. Ca, Mg, Na and 3

K), exchangeable sodium percentage (ESP) following 

standard procedures. In this paper, EC data was used to e 

estimate soil salinity prediction by digital mapping 

algorithms.

Environmental covariates 

All terrain attributes used in this study were 

derived from a shuttle radar topographic mission 

(SRTM) DEM with a 30 m grid resolution. The primary 

and secondary derivates of DEM like elevation, slope, 

aspect, curvatures (plan and profile), topographic 

wetness index (TWI), LS factor, Multi-resolution Ridge 

Top Flatness (MRRTF), Multi-resolution Index of Valley 

Bottom Flatness (MRVBF), Total Catchment Area 

(TCA) and valley depth were derived by using Saga-GIS 

6.3.0 version (Table 1). Along with DEM attributes, 

other indices were also computed, which included 

salinity index (SI), soil adjusted vegetation index 

(SAVI), vegetation soil salinity index (VSSI), 

normalized difference salinity index (NDSI), normalized 

difference vegetation index (NDVI), salinity ratio (SR), 

and brightness index (BI) were also derived from the 

Landsat 8 satellite data. Three bioclimatic variables were 

selected for use as covariates in the DSM study and these 

variables are mean maximum temperature (Max Temp), 

mean minimum temperature (Min Temp) and annual 

precipitation (annual ppt). Raster data on bioclimatic 

Fig. 1. Location map and soil sampling points of the IGNP canal system in the hot arid India 
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variables at 30s resolution were downloaded from 

http://worldclim.org/current for the whole world and the 

respective grids for the study area were extracted from 

these world grids.

Spatial prediction models

Random forest

RFs are a group of algorithms that have been 

developed as an extension of Classification and 

Regression Tree Analysis (CART) to enhance the 

prediction performance of the model (Breiman 2001). 

Number of tree (n tree), minimum no of samples at 

terminal node (n min) and a number of predictors used 

for fitting the tree (Mtry) are the three parameters that 

decide the fitting of the random forest model. The 

internal out-of-bag (OOB) prediction generated through 

boot strapping provides an estimate of accuracy across 

the decision trees which was used for the initial 

assessment of the performance of the model (Breiman 

2001). RF is non-sensitive to missing data and has the 

capacity to handle a large number of both quantitative 

and categorical data (Dharumarajan et al. 2017). RFs 

have been mainly used for classification problems. RFs 

are a data-driven statistical approach that has recently 

been employed in DSM studies (Hengl et al. 2015). 

Given that it shows good accuracy, is fast, simple to use, 

hasa useful internal estimation of error, and correlation 

and calculationof variable importance. For running the 

RF algorithms, the Random Forest package was used in 

the R environment. 

Quantile regression forest 

QRF model is an extension of the random forest 

model and the advantage of QRF over RF is for each 

node in each tree, RF keeps only the mean of the 

observations that fall into this node and neglects all other 

information whereas QRF keeps the value of all 

observations in this node, and assesses the conditional 

distribution based on the information (Meinshausen 

2006; Dharumarajan et al. 2019). For the present study, 

the quantreg Forest package was used for running the 

QRF algorithmin an R environment. 

Support vector machine

The SVM is a class of effective, very flexible 

modelling algorithms. The theory behind it was initially 

developed in the framework of classification models 

(Kuhn and Johnson 2013). SVM analysis proposed by 

Cortes and Vapnik (1995) is one of the general supervised 

machine learning tools for classification and regression. 

There are many planes in SVM to divide input data into 

different classes. Previous studies showed a better 

learning ability and lower prediction errors compared 

with many other algorithms (Maynard and Levi 2017; 

Mahmoudzadeh et al.  2020). For running the SVM 

algorithmin, e1071 and caret package were used. 

Validation of statistical algorithms

The accuracy of the soil EC  map was assessed e

through a cross-validation approach. For calibration of 

the model, 75% of soil datasets were used and the 

remaining 25% datasets were used for validation. To 
2compare model performance, we use R , RMSE and 

MAE (Dharumarajan et al. 2017;2019) described these 

measures of model performance as follows:

Mean absolute error (MAE)

Root mean squared error 
(RMSE)

where P  and O  are the predicted and observed EC ; n is i i e

the number of samples; P and O are the means for the 
2

predicted and observed EC . Models with the highest R  e

and lowest RMSE and MAE were deemed the best 

models. The model calibration and validation were 

repeated using different environmental variables.
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Results and Discussion

Descriptive statistics

The descriptive statistics for EC  are given in e

table 2. The results show that the mean EC  in the study e

-1
area is 4.60 dS m . According to this table, the EC  e

-1
ranged from 0.50 to 36.05 dS m in the different 

irrigation zone of the IGNP canal system. The 

distribution of EC  in the Bikaner branch area ranged e

-1from 1.6 to 3.7 dS m , which is not extra ordinarily high. 

In contrast, the EC  values of the Anupgarh branch were e

higher than in IGNP main and Bikaner branch canal area 

(Fig. 2). The difference between the minimum and 
-1

maximum EC  is very high (35.55 dS m ), this difference e

showed that the surface soils are more easily affected by 

management, environmental variables and disturbance. 

The coefficient of variation (CV) for EC  was high (more e

than 59.13%), which shows a wide range of values 

across the study area; it implies that the EC  has strong e

spatial dependence. Wilding (1985) classified CV values 

into 3 classes with high (CV > 35%), moderate (15% 

>CV < 35%) and low variability (CV <15%). According 

to CV analysis, our results indicate that EC  has a semi-e

homogeneous spatial distribution that could be 

associated with the difference in land use, types of 

farming and management practices and topographic 

position in the study area. 

Table 2. Summary statistics of soil salinity (EC ) e

               in the IGNP canal system.

Fig. 2. Boxplot of EC  under three irrigation zone of IGNP canal system. e

Statistical parameter ECe(dS m-1) 

Mean 4.60 
Std. error of mean 0.90 
Median 1.55 
Std. deviation 7.17 
CV 59.13 
Skewness 2.72

 
Std. error of skewness 0.30

 
Kurtosis 7.38

 Std. error of kurtosis 0.59
 Minimum 0.50
 Maximum 36.05

 Percentiles 25 1.05
 50 1.55
 75 4.50
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Pearson correlation coefficients between ECe 

and predictor variables are shown in fig.3. EC  at the soil e

surface is positively correlated with max temp (r = 

0.452) and negatively correlated with annual 

precipitation (r=- 0.406) respectively. The correlation 

between climatic and topographic variables and the 

quantity of EC  has been documented previously e

(Manickam et al. 2021). Climatic variables influence 

**
Correlation is significant at the 0.01 level

Fig. 3. Pearson correlation between environmental covariates and ECe

soil properties, vegetation cover, water retention, soil 

erosion and also soil sanity. Our results also indicated a 

negative correlation between EC  and the elevation (r = -e

0.392) and a positive correlation with valley depth (r = 

0.377), similar to the findings of Taghizadeh-Mehrjardi 

et al. (2014). Other terrain attributes did not show a 

correlation with EC  in our study area. e

Relative importance of covariates

The parameter sensitivity analysis for the 

random forest model is presented in fig. 4. The variable 

importance is measured based on “out-of-bag” samples 

which mean observation is not included in the model. 

Another detail is that they are based on an MSE accuracy 

measure; in this case, the difference, when a covariate is 

included and excluded in a tree model. For the node 

purity, it is the total decrease in node impurities from 

splitting on the variable, averaged over all trees. Annual 

precipitation, elevation, aspect and valley depth are the 

best predictors to explain the variability of EC  in our e

study area. In addition, the result reveals that the climatic 

indicators contribute much more compared to terrain 

attributes inestimating salinity in an arid ecosystem. 

Kühn et al. (2009) reported that terrain attributes had 

weak and non-significant effects on the prediction of EC 

whereas geological unit and groundwater table map have 

a significant effect on the regression models.

Performance of DSM algorithms to predict ECe

Comparing the statistical distribution and 

correlation between the models, we found that the higher 

Pearson correlation coefficient (r-value) between 

predicted values was between RF and QRF (0.99) (Fig. 

5). We also found that the statistical distribution of 

predicted values is quite similar between the three 
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Fig. 4. Relative importance of environmental covariates using the best prediction model (RF).

Fig. 5. Comparision of DSM model correlations (RF, QRF, SVM) and statistical distributions
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methods and that the higher discrepancies were found in 

SVM model. The results of the cross-validation 

procedure used to compare the performance of RF, QRF 

and SVM are summarized in table 3 and fig. 6. Based on 
2

the error indices (R , RMSE and MAE), all models 

performed well, but RF was best. We found that there 

were slight differences between RF and QRF models, 

suggesting that these two models were relatively stable 

in their predictive ability. The results showed that all 

models predicted EC  acceptably well based on the range e

2
of average values of R from 0.505 to 0.701; RMSE 

between 3.367 and 3.628 and MAE from 1.722to 2.955. 

Results showed that the RF algorithm could predict EC  e

2withan R , RMSE and MAE of 0.701, 3.367 and 1.722, 

respectively. RF and QRF showed similar performance in 

predicting EC , while SVM showed lower efficiency than e

2
the other models in terms of R  and prediction errors. 

These conclusions can be verified by plotting a Taylor 

diagram (Fig.7), which summarizes multiple aspects of 

model performance, such as the agreement and variance 

between observed and predicted values. Taylor diagrams 

interpretation relies on the relationships between 

explained variance and bias (from observed and 

modelled data). Taylor diagram shows that SVM is more 

distant than the other implemented approaches. Also, the 

RF method is closer to the observed value, followed by 

QRF. Although, there is no significant difference was 

observed between the RF and QRF algorithms.

Fig. 6. Scatter plots of predicted against observed values in different DSM models

Table 3. Performance of three different DSM modeling methods to predict soil salinity

Model MAE RMSE R2 

RF 1.722 3.367 0.701 
QRF 1.724 3.548 0.695 
SVM 2.955 3.628 0.505 
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Fig. 7. Taylor diagram used in the evaluation of the three selected DSM models

Fig. 8. Spatial distribution of soil salinity (EC ) using the RF model in the IGNP canal system.e

Spatial prediction of ECe

Fig. 8 shows the map of EC  obtained by the best e

model. Wide variation in distribution of salinity was 

observed in the study area. The spatial patterns of EC  in e

all models are sensible with large values in the Anupgarh 

branch canal side of the study area. The spatial patterns 

of EC showed high levels in Anupgarh branch of canal e 

area, and low levels in the main and Bikaner canal area. 

The variation of salinity in the 5 km vicinity of IGNP 

canal system, especially with regard to the quantity and 

distribution of salts in each branch canal, differed 
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considerably. Hydrology was the main factor 

responsible for the difference in accumulation and 

distribution of soluble salts in soil profiles. Continuous 

water supply, intense evaporation, and the existence of 

potential sources of salts in the profile or input of salts 

with water are main cause of development of secondary 

salinization in Anupgarh branch of canal area. Presently, 

the aquifer system in the Anupgarh branch area is made 

up of a complex arrangement of layers of sand and clays 

(Khan et al. 2003). It has frequent lenses of silt, clay and 

kankar and occasional gravel horizons. Presence of a 

hard pan is a hydrological barrier that does not allow the 

percolated water to infiltrate deeper. The presence of 

impervious layers accompanied by absence of surface 

drainage outlet is a major factor in rising water table and 

subsequent waterlogging in lowland, which is 

responsible for secondary salinization.

Conclusion

This study shows that DSM algorithms can be 

successfully used for mapping salinity and their 

uncertainty at a large scale in the IGNP command area of 

India where there is a wide range in land use and terrain 

attributes. Among the DSM algorithms, RF model 

showed the best performance inpredicting EC at the 

regional level, achieving the largest accuracy compared 

to the other algorithms tested. However, due to the 

similar performance of the RF, QRF and SVM models, 

we suggest that all three models should be calibrated, 

and then the best results applied for spatial prediction of 

target soil attributes in other geo-graphical settings. The 

most important covariates that influence ECe 

distribution in the IGNP command area are rainfall, 

elevation aspect and valley depth. The vulnerability to 

soil salinity showed high levels in Anupgarh branch of 

canal, and low levels in the IGNP main and Bikaner 

canal area. The progressive increase in vulnerability to 

soil salinity in the Anupgarh branch of IGNP area is 

attributed to unsustainable agricultural practices and 

inputs, quality of irrigation water, lack of advanced 

irrigation technologies and efficient drainage systems, 

and improper land management. Further more, the 

model developed in this study provides comprehensive 

guidance for the land planners and decision makers to 

develop amicable strategies, practicing policies and 

regulations to address the appropriate use of the land and 

for an improvement of the ecological system.
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