

Lithic fabric, saprolite and pedoplasmation: The canvas of soil formation

Rohith. A Ka, Kiran Karthik Rajb, Meera A V

^a Ph.D Scholar, Department of Soil Science and Agricultural Chemistry, College of Agriculture,
Vellayani, Thiruvananthapuram, (Kerala), 695522, India.

ORCID: 0009-0007-9760-5565, Email id: rohith-2020-11-030@student.kau.in

^b Assistant professor, Department of Soil Science and Agricultural Chemistry, College of Agriculture,
Vellayani, Thiruvananthapuram, (Kerala), 695522, India.

ORCID: 0000-0001-7313-5828 Email id: kiran.kr@kau.in

^c Assistant professor, Integrated Farming Systems Research Station, Karamana,
Thiruvananthapuram, (Kerala), 695002, India.

ORCID: 0000-0002-7303-1663

Abstract: Soil formation is a complex interplay involving lithic-fabric, saprolite, and pedoplasmation, which dictate the evolution of soil parent materials and their vertical differentiation. The transformation of loose sediments and coherent rocks during the initial stages of soil formation is underpinned by intricate mechanisms. Bioturbation drives soil material formation from loose sediments, while the transformation of coherent rocks involves the development of saprolite through weathering, succeeded by the pedoplasmation process. Pedoplasmation signifies the metamorphosis of saprolite into soil material, marked by transitions from saprolite fabric to B horizons, that often manifests as micro-scale shearing, resulting in alternating lithic and soil fabrics. The preservation of lithic fabric is prolonged in iron oxide-rich regions; however, mineral recrystallisation and alteration gradually convert lithic and soil fabrics. Micromorphological analysis unveils the intricate characteristics and transformations within saprolite profiles, which exhibit distinct patterns attributed to bedrock types and climatic conditions. Rock diversity, encompassing igneous, metamorphic, and sedimentary types, engenders distinctive transformations inherent to each rock type, yielding features ranging from mineral modifications to void development. Micromorphological changes are investigated employing various techniques and tools viz., X-ray diffraction, X-ray microtomography, 3D microstructure characterisation, and spectral induced polarisation (SIP) tomography, which provide valuable insights into the micro-pedo complex. This study unveils the geological tapestry of soil formation, portraying lithic fabric, saprolite, and pedoplasmation as pivotal sketches in the ongoing saga of the Earth's surface evolution.

Keywords: Soil morphology, weathering, pedological transformations, micromorphological features, pedoplasmation

Introduction

eventuated by the transformation of existing rocks into soil parent materials and then to vertically differentiated

Soil formation is a long-standing process

*Corresponding author: (Email: meera.av@kau.in)

horizons with time. Various transformation actions are attributed to the loose sediments and coherent rocks during the initial stages of transformation. Pedoturbation, particularly bioturbation, results in soil material formation from loose sediments (Kooistra and Pulleman 2018), while coherent rocks lay on two disparate steps: (i) formation of saprolite (weathered rock) through weathering, followed by (ii) the conversion of saprolite into soil material which can be referred as pedoplasmation. (Zauvah et al. 2018). Pedoplasmation is a transition between saprolite fabric and a B horizon (Flach et al. 1968). This might result in the development of repeated micro-scaled shears on the saprolite, which exemplifies the formation of millimetre-sized parallel layers of alternating lithic fabrics and soil fabrics.

The iron oxide saturated spots can preserve lithic fabric for a longer period (Sycheva et al. 2022). The gradual transformation of lithic fabrics to soil fabrics in lower layers of laterites occurred due to kaolinite recrystallisation and conversion of kaolinite mesomorph to fine-grained aggregates with some random fabrics (Muller and Bocquier 1987). Minerals and altermorphs combined are responsible for the formation of preserved lithic fabrics in a saprolite (Stoops and Mees 2018; Stoops et al. 2020). In the soils of humid areas, saprolite reaches nearly 50m depth, which allows it to develop a part of regolith (Holbrook et al. 2019). Most of the tropical and subtropical soils are developed from saprolites through deep weathering of fabrics (Suhr et al. 2018). Saprolites in various rocks of tropical, subtropical, temperate and Mediterranean areas have been studied with submicroscopic and micromorphological techniques (Schaefer et al. 2002; Scarciglia et al. 2005; Jimenez-Espinosa et al. 2007). micromorphological studies are limited and focused more on the mineral weathering of saprolite.

Lithic fabric, saprolite, and pedoplasmation collectively contribute to the intricate canvas of soil formation by representing different stages and processes in the transformation of bedrock into mature soil. The lithic fabric represents the initial geological material, while saprolite reflects the intermediate stage, where physical and chemical weathering has started to break down minerals and create voids. Pedoplasmation, on the other hand, signifies the advanced stage of weathering characterised by the accumulation of organic matter, clay minerals, and microbial activity, leading to the development of fertile topsoil, where they illustrate the dynamic and complex nature of soil formation, highlighting the interplay of geological, chemical, and biological processes over time.

Geochemical and pedochemical weathering

Weathering is a fundamental geological and environmental process that shapes the Earth's surface over time. It involves the breakdown and alteration of rocks and minerals, but there are distinct mechanisms through which this transformation occurs, depending on the environmental context (Wray and Sauro 2017). Two primary modes of weathering, each driven by a unique set of factors and processes, are geochemical weathering and pedochemical weathering.

Geochemical and pedochemical weathering processes play a fundamental role in shaping the characteristics of the lithic fabric, saprolite, and pedoplasmation within soils. Geochemical weathering contributes to the breakdown of minerals in lithic materials, while pedochemical weathering influences the alteration of rocks and minerals in the soil matrix. Understanding these weathering processes is crucial for comprehending how lithic fabrics evolve into saprolites and, eventually, the development of pedoplasmation, which collectively forms the canvas of soil formation.

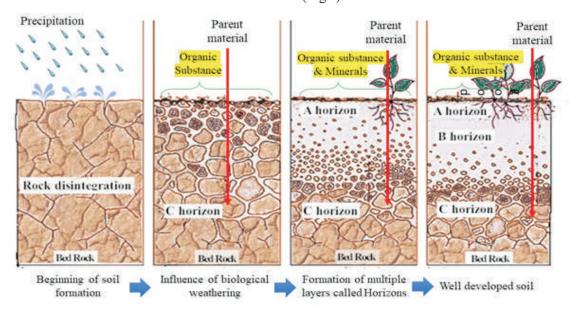
Table 1. Major features of geochemical and pedochemical weathering

Parameter	Geochemical Weathering	Pedochemical Weathering
Description	Chemical breakdown of rocks and minerals	Chemical alteration of r ocks and minerals due
	through reactions with external agents like	to interactions with substances found in the
	water, oxygen, and acids (Blattmann et al.	soil or regolith (Osman 2013).
	2019; Rambabu et al. 2020).	
Primary	Water, oxygen, carbon dioxide, acids, and	Soil-derived substances such as organic matter,
Agents	other chemical compounds from the	microbes, and organic acids produced by plant
	atmosphere and surface water (Sidkina et	roots (Erens 2015)
	al. 2022; Roylands et al. 2022).	
Key Processes	Dissolution, oxidation, hydrolysis, and	Ion exchange, complexa tion, chelation, and
	carbonation are common processes	precipitation are prevalent processes
	involved (Oludare 2017).	(Shrivastav et al. 2020)
Environmental	Climate, temperature, precipitation, and the	Soil composition, moisture content (Pawlik
Factors	presence of certain minerals can influence	and Šamonil 2018), microbial activity (Singh
	geochemical weathering rates (Anderson	et al. 2023), and the types of plants and
	2019; Vinnarasi et al. 2021).	vegetation (Chandran et al. 2021) in an area
		play significant roles
Speed of	Generally faster, especially in regions with	Generally slower, but can be significant in
Weathering	high rainfall and elevated temperatures.	soils with high organic matter and microbial
	(Clift 2020; Hack 2020).	activity (Tsolova et al. 2019).
Common	Typically, more pronounced in expo sed	Mainly occurs in soils and regolith layers
Locations	rocks and mineral outcrops (Talapatra and	where minerals come into contact with organic
	Talapatra 2020).	matter and root exudates (Osman 2013).
Products of	Often results in the formation of soluble	May lead to the formation of secondary
Weathering	ions that can be transported away from the	minerals, organic matter -rich horizons, and
	weathering site (Hayes et al. 2012).	clay minerals in the soil profile.
Example	Acid rain causing the dissolution of	Plant roots releasing organic acids that alter
	limestone to form caves.	the soil pH and mineral content (Shrivastav et
		al. 2020).

Geochemical and pedochemical weathering are distinct processes involved in the chemical alteration of rocks and minerals (Table 1). Geochemical weathering is primarily driven by external agents such as water, oxygen, and acids, with common processes including dissolution, oxidation, hydrolysis, and carbonation. It operates faster, especially in regions with high rainfall and elevated temperatures, typically affecting exposed rocks and leading to the formation of soluble ions. In contrast, pedochemical weathering occurs due to interactions with substances in the soil, including organic matter, microbes, and plant root-derived organic acids. Key processes encompass ion exchange,

complexation, chelation, and precipitation. While pedochemical weathering generally proceeds slower, it can be significant in soils rich in organic matter and microbial activity, often resulting in the formation of secondary minerals, organic matter-rich horizons, and clay minerals in the soil profile. These two processes collectively contribute to the complex weathering of Earth's surface materials.

Lithic fabric: formation and transformation


Lithic fabric refers to the characteristics and arrangement of rock fragments or lithic materials (gravel,

11₄ Rohith. A K. et al.

stones, pebbles, and larger rock fragments) within a soil horizon or layer. Formation of lithic fabric occurs through the combination of relict minerals such as quartz and alteromorphs such as biotite, garnet etc. (Nahon 1991). Loss of clay alteromorphs and putrification of gibbsitic and ferruginous pseudomorphs and resistant clay minerals are two dominant features of weathering processes. An increase in volume due to expansion of biotite, granite and gneiss causes fabric deformation. In addition, crystal formation exerts pressure, which leads to the deformation of fabric, especially due to the calcite and gypsum formation. According to Marcelino et al. (2018) and Stoops and Marcelino (2018), the separation of fragments by losing their optical continuity is observed in coarse grains of quartz. Due to pedoturbation, pedoplasmation takes part in the saprolite of sedimentary as well as metamorphic rocks through the variation in the layers of constituents (Stoops et al. 2018). Homogenization and defragmentation of saprolite due to the process of bioturbation creates channels, chambers, vughs and passage features with pedoplasmated coatings of kaolinite-hematite saprolite (Stoops et al. 2020; de Freitas et al. 2021). As the size of constituents impacts the transportation of materials, the voids are found to be more abundant in fine-grained materials than in coarsegrained materials. Moldic voids established through congruent dissolution are important in pedoplasmation, contributing to weathering profile production.

Saprolite Profile

The worn rock that retains a minimum of some of the initial structure of the rock is called saprolite. It serves as an origin of plant nutrients, filters and retains water, and contributes significantly towards the silicate carbon sink as it is the deepest part (da Silva et al. 2022). Weathering of profiles can be reciprocated to lower and upper saprolites. Altered compact rocks called saprock, overlying unweathered igneous rock, belong to lower saprolite. They are subjected to successive losses in their original lithic fabric nature as well as compactness towards the surface and represent upper saprolite (Tonui et al. 2003; Stoops and Schaefer 2010). Saprolites are products of long-term chemical weathering that exceeds the rate of erosion with downward progression (Hayes 2019). It has been observed in tropical as well as humid temperate regions, where the relief provides an environment for the accumulation of weathered products, and these materials exhibit palaeofeatures. In general, saprolites have three-dimensional variability in their nature, resulting under the influence of different bedrock (Fig 1).

Fig. 1. Diagrammatic representation of the transformation of rocks indicating the major pedogenic transformations

Micro-morphological features

Weathering of primary minerals followed by illuviation, neoformation (including iron oxide accumulation and neoformed clays) and biological activities resulted both vertical and horizontal variabilities in fabric and mineralogical composition,

degree of weathering and hydrological condition of the parent rock (Kuhn *et al.* 2018; Finlay *et al.* 2020; Kogel-Knabner and Amelung 2021; Menezes *et al.* 2022), that results in the micro-morphological characteristics of saprolite profile (Table 2) and distinct micro-morphological changes.

Table 2. Micromorphological features of saprolite profile

Associated micro-morphological features	Reference(s)
Coatings and infillings of clay and iron oxides, hypo coatings, impregnated	Vepraskas et al. 2018
nodules and excrement infillings in tropical saprolites.	
Development of calcite and/or soluble salts infillings contributed in the	Owliaie et al. 2018; Sevin et al.
physical weathering of rocks and minerals in arid areas.	2020
Weathering of original lithic fabric causes development of voids and	Stoops and Schaefer 2010
secondary minerals, which led to breakup of lithic fabric found in upper	
saprolite	
Bedding or schistosity partially controlled the mechanical and thermal stress	Meunier 1983; Buss et al. 2008.
on rocks resulted in the formation of voids in saprolites, which differ in	
number and/or size with degree of weathering and it can fill in the	
weathered products. These voids act as a primary path for weathering	
solutions in rock and oversee spheroidal weathering paradigms	
Quartz grains are affected by mechanical fracturing and chemical	Stoops and Marcelino 2018;
weathering, where fractures get filled with illuvial clay and weathering	Iglesias-Martínez et al. 2020;
alters surface morphology respectively	Sandeep et al. 2022
When feldspar undergoes weathering in tropical saprolites, it is gradually	Stoops and Mees 2018; Bonnet
substituted by clay minerals like halloysite and kaolinite, while in regions	et al. 2022; Warr 2022; Volf et
with lower h umidity, 2:1 phyllosilicate form. In arid areas, biotite	al. 2023
commonly transforms into vermiculite along with clay minerals in mixed	
layers. Moreover, altered forms often include kaolinite layers tinted by iron	
oxides.	
Initial changes in pyroxenes caused by iron oxides coating cleavage planes	Certini et al. 2006
and fractures as well as fading of crystal boundaries occurred at	
Mediterranean climate.	
Pyroxenes weathering begins from goethite coated cracks and extends to	Mulyanto et al . 1999;
boxwork pattern by the uniform dissolution of remnant minerals. Under	Chesworth et al. 2004
drier climates, alteromorphs can be formed from olivine and pyroxenes,	
which consists of expandable 2:1 clays and oxides of iron.	
Amphiboles such as actinolite undergo a slow change in a Mediterranean	Abreu and Vairinho 1990
climate as they are replaced by a yellow -brown trioctahedral vermiculite.	
This replacement is most common in fractures and cleavage cracks.	

Features such as coatings, infillings, void development, and mineral transformations provide concrete examples of how pedoplasmation and weathering influence the lithic fabric and saprolite in

soil formation. They serve as tangible evidence supporting the concepts and dynamics described in several investigations, enhancing the understanding of the intricate relationships between soil development and

micromorphological changes in different geological and climatic contexts.

Coatings and infillings of clay and iron oxides, as reported in tropical saprolites (Table 2), demonstrate the influence of chemical alteration on mineral composition and soil characteristics. In arid areas, the development of calcite and soluble salts infillings highlights the role of physical weathering in shaping the soil matrix. The weathering of lithic fabric and the formation of voids in saprolites, influenced by factors like bedding and schistosity, further illustrate the complex processes involved in soil development. Additionally, the alteration of specific mineral types, such as feldspar, biotite, pyroxenes, and amphiboles, in response to different climatic conditions underscores the diversity of pedochemical weathering reactions. These transformations include the substitution of minerals, the formation of clay minerals and oxides, and

the gradual replacement of original mineral phases. The interplay between chemical and mechanical weathering, as well as climatic influences, leads to the intricate micromorphological features observed in soils and saprolites, ultimately shaping the landscape and soil characteristics in various regions.

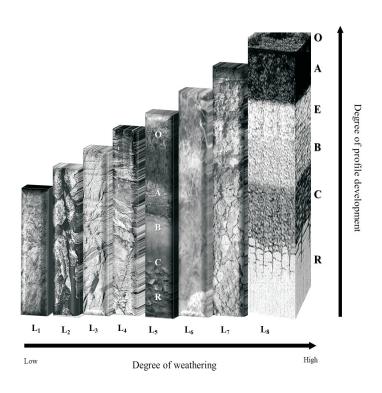
Petrological features

Pedo-features are imperative evidence of the intricate processes and micro-morphological changes occurring during soil formation, emphasizing the role of parent rock composition in shaping soil characteristics. It enriches the understanding on lithic fabric and pedoplasmation contribution to the diverse canvas of soil profiles, enabling researchers and soil scientists to better comprehend the intricate interplay between geological factors and soil development (Table 3).

Table 3. Mineralogical changes on various rock types

Rock types	Characteristic pedological features	Reference(s)
Granite	Depended on structural and textural propertie s of parent rock.	Scarciglia et al. 2005; Popli et
	Inter, intra, and transmineral planar voids were produced as a	al. 2022
	result of mechanical weathering of the lower saprolite	
	The voids formed can be filled with sesquioxides and amorphous	Ghosh and Guchhait 2020; Broz
	clays. The appearance of speckles brought on by freshly generated	2022.
	mineral inclusions, where alteromorphic or pseudo morphic	
	weathering occurs in saprock.	
	Major weathering products observed at tropics are kaolinite,	Sequeira Braga et al. 2002;
	halloysite and gibbsite and in temperate region are illite,	Picanço et al. 2019; Tsozue
	vermiculite and chlorite.	2020; Pospíšilova 2021
	Sericitization of perthite and plagioclase near grain centers by	Stoops and Dedecker 2006;
	hydrothermal alteration. In addition, c lay mineral formation has	Yuguchi et al. 2019; Gawad et
	reported on the walls of plagioclase grooves in the saprock	
	Alteration of biotite by exfoliation may occur on continuous	
	weathering, that found common in upper saprolite.	2023.
	The change in biotite is evident through a reduction in	Pitty 2020.
	pleochroism and a decline in interference colors, implies a	
	transformation into layered biotite -vermiculite and iron oxides	
	along the cleavage planes or edges of the crystal, that may give	
	dark brown to black stains.	
Voids of saprolites were distinguished by yellowish to reddish		Stoops and Marcelino 2018
	brown clay particles as infillings. Crevices with ferruginous	
	coatings, nodules and microcrystalline quartz (Chal cedony)	
	nodules were also reported	

Gabbro	In a temperate climate zone various transformation were observed	Egli et al. 2021
	such as Hornblend weathered to smectite and goethite	
	Feldspar altered to kaolinite	Zhu et al. 2019
	Chlorite transformed to interlayered chlorite-vermiculite	Nadeau and Harris 2019
Andesitic	Ferruginous coatings are reported in the crevices of saprolite and	Stoops and Marcelino 2018;
	these cracks decreases from upper saprolite towards the lower	Hassan Ahmed 2022
	saprolite.	
	In the upper saprolite plagioclase psuedomorphically substituted	Salama et al. 2016; Mei et al.
	by kaolinite and mica mixture, while in lower saprolite,	2021; Bonnet et al. 2022
	plagioclase weathered to sericite, kaolinite and smectitie.	
	Total pseudomorphic replacement of plagioclase by kaolinite	Gu et al. 2007, Anda and
	through weathering is possible through the fissures and cleavage	Dahlgren 2020
	planes in saprock zone of dacite profile	
	Feldspar altered to illite, kaolinite, hallo ysite and gibbsite and	Warr 2022
	biotite altered to chlorite and vermiculate through long process.	
	In saprolites, vermiculite may fill in voids along the cleavages	Certini et al. 2006; de Sousa et
	formed on weathering of pryoxenes to kaolinite, that exhibited	al. 2023
	decline in pleochroism.	ui. 2023
	Feldspar altered partially to vermiculite, in the environments of	Drees et al. 2003; Bakhsh 2019
	temperate region. Formation of iron oxide in the groundmass due	Brees et al. 2003, Bakiisii 2013
	to the alteration of ferromagnesian minerals occurred in the	
	tropics.	
	In the tropics, andesite undergoes spheroidal weathering, in which	Mulyanto and Stoops 2003;
	weathered plagioclase products moves towards the outer boulder	Szymański and Szkaradek 2018
	shell where amorphous materials disappear leaving behind	Szymański and Szkaradek 2010
	mouldic voids.	
	In the Antarctician environment, upper saprolite existed in	Schaefer et al. 2008; Basibuyuk
	optically isotropic yellowish colour due to the hydrothermal	and Yalcin 2019
	mineralization of pyrites.	und Turem 2017
	Oxidation of sulphides and mobilization of iron results in chemical	Gu et al. 2007; Szymański and
	weathering, secondary sulphate formation and generate an	Szkaradek 2018
	amorphous iron oxide phase. Hence voids covered by clay and	SZRATAGER 2010
	nodules of iron oxides are considered as pedofeatures. Saprolites	
	of this zone shows undifferentiated and speckled b fabrics, also the	
	intergranular voids are filled with isopachous amorphous silica	
	cement.	
Gneiss	Thick saprolites (>20m) can be produced by the weathering of	Schaefer <i>et al.</i> . 2002; Ibraimo <i>et</i>
Officiss	gneiss along with plethora of core boulders.	al. 2004; Simas et al. 2005;
	gheiss along with picthola of cole bounders.	Muggler et al. 2007
	Saprolite formation can be identified in 2 phases based on	Le Pera et al. 2001; Helva c1 et
	micromorphology. The first phase describes on the conserved	al. 2018
	micromorphological features of parent rock and phy sical	ui. 2016
	weathering process for the microfracture development in lower	
	saprolite or saprock.	Biondino et al. 2020
	Formation of further chemical weathering of minerals and micro	Biondino et al. 2020
	cracks defines the second phase, in which alteration of feldspar,	
	garnet and biotite forms ferruginous compounds and clay	
	minerals.	
	Development of biotite on gneiss by the process of chloritization.	Baidya et al. 2019; Castro et al.
	Formation of cracks due the garnet weathering in gnesis, were	2022; Oziegbe and Oziegbe
	filled with iron oxide obtained by biotite weathering results in a	2023
	boxwork fabric	


		G: 1 2005 P 13 1 1
	Occurrence of primary minerals with gibbsite, dominant gibbsitic	Simas et al. 2005; Budihal and
	alteromorphic structures and the existence of ferruginous zones of	Pujar 2018; Stoops and Mees
	voids attributes distinct features of saprolites on gneiss.	2018; Budihal and Manjunatha
		2023
Schists	Saprolites on micaschists can be occurred varied depths in	Maurizot 2020; Pintaldi et al.
	temperate to tropic zones.	2021
	Parallel arrangement of muscovite and biotite crystals occurs in	Cerri et al. 2020; Hancock 2020
	deeper saprolite with straig ht voids and interlocking quartz	
	crystals along with schistosity. Wide voids are observed in upper	
	saprolite	
	Two kinds of weathering in feldspar one of which is insitu	Budihal and Pujar 2018;
	replacement by gibbsite and the other one is vacuoles inside the	Cardoso et al. 2019
	grains and embayments at their edges are produced by dissolution	
	Iron segregation, void clay coatings and ferruginous coatings on	Ghosh and Guchhait 2020;
	trans mineral cracks in the upper saprolite.	Verrecchia and Trombino 2021
Amphibolite	Distinct core stones with weathered center comprising alternate	Okrusch et al. 2020; Soloviev et
1	layers of epidote, clinzoisite and actinolite, in a groundmass	al. 2020
	constitute the saprolite on an amphibole schist.	
	Lower saprolite contains pale yellow weathering rims by kaolinite,	Malla Noubisi <i>et al</i> . 2021
	while upper kaolinite contains dark brown weathering rims consist	
	of fine -grained gibbsite or kaolinite filled in the iron oxide	
	schistosity network.	
	According to morphological standards, on alteration clinozoisite	Dill and Kolb 2019; de Luchi et
	and epidote form gibbsite and actinolite, where actinolite exhibit	al. 2021
	rapid weathering	
	Reddish or golden coatings on the lithic fabric of very thin	Popli et al. 2022
	saprolite layer of amphibolite are specific character obtained from	
	the temperate climate, where vermiculate is the dominant lay	
	mineral.	
	Transmineral cavities coated with iron oxide is considered as a	Bigot 2021
	pedofeature in saprolite.	
Serpentinite	In the lower saprolite profile of serpentinite exhibits weathered	Garcia et al. 1974
Serpentimite	chlorite, plagioclase, pyroxenes, chalcedony and serpentine with	Garcia et al. 1974
	iron oxide deposition, while in upper saprolite profile, serpentine	
	is further altered and contains iron oxide in the fissures.	
	With the preserved lithic fabric, lower saprolite profile consists of	Zauyah et al. 2018
	antigorite crystals, magnetite with altered iron oxides, Chlorite	Zaayan et al. 2010
	with partial alteration to kaolinite, a chrysolite veins	
	kaolinite replace serpentine with lithic fabric preservation. Iron	Stoops et al. 2008
	oxide coatings and hypocoatings along the planar voids,	Stoops et al. 2000
	disappearance of kaolinite from upper saprolite and limpid	
	authigenic clay coatings in some voids of lower saprolite were	
	observed.	
Phyllites and Slates	Phyllites and slates are prone to intensive weathering which	Briški 2020
1 my mics and states	produces thick saprolites	Diloni 2020
		El Danalas (/ 2000 B.W.)
	They exhibit fine grained structure with quartz and sericite	El Desoky et al. 2020; Pellant
	alignment observed biotite, muscovite, graphite grains and iro n	and Pellant 2020
	content in these rocks.	7 1 4 1 2010
	Quartz > muscovite > biotite is the typical stability pattern that is	Zauyah et al. 2018
	revealed by the minerals' weathering. Biotite initially transforms	
	into a mica -vermiculite interstratified clay mineral after losing its	
	pleochroism. With an extinction pattern akin to a mosaic, sericite	
	weathers to kaolinite.	l

Siliciclastic	Rocks consists of grained quartz and illite -type mica as layers wirh hydroxy aluminum interlayers	Andrade et al. 2019; Akker et al. 2021	
	Iron oxide coatings between the fractures of polycrystalline quartz	Molenaar and Felder 2018	
Calcareous	Calcareous rocks undergo complete weathering due to dissolution of original rock and obtained impure limestone, marls may form distinct patterns	Dasgupta and Ghosh 2018 ; Manica <i>et al.</i> 2020	
	Lime stone saprolite has rippled layers of limestone and siltstone with coating of iron oxide in the fractures and also with clay coatings. El Aref 2023; Bradwel Ballantyne 2021		

Each rock type exhibits distinct weathering patterns, mineral transformations, and micromorphological changes within their respective saprolites (Table 3). For instance, granite weathering results in the formation of voids filled with sesquioxides and clays, while diorite experiences alterations in upper, middle, and lower saprolite layers, including the transformation of biotite to kaolinite and feldspar to gibbsite. Gabbro undergoes weathering transformations such as the conversion of hornblende to smectite, andesitic rocks exhibit the pseudomorphic replacement of plagioclase by kaolinite, and gneiss forms thick saprolites with distinctive micro-morphological features. Schists display parallel arrangements of muscovite and biotite in deeper saprolites, while amphibolite saprolites contain core stones with weathered centers. Serpentinite exhibits changes in chlorite, serpentine, and iron oxide deposition within its saprolite profiles. Phyllites and slates are prone to intensive weathering, resulting in finegrained structures with mineral transformations. Siliciclastic rocks feature iron oxide coatings between quartz grains, and calcareous rocks undergo complete weathering through dissolution and the formation of distinct patterns. These detailed insights into rock-specific pedological features enhance our understanding of how geological compositions influence soil development and micromorphological changes.

Pedoplasmation

Pedoplasmation was introduced by Flach et al. (1968) who identified it as the formation of soil B horizons from weathered rock termed saprolite (Fig. 2). The integration of refractory residual primary minerals and secondary minerals into the soil matrix fades the rock texture utilizing groundwater action, faunal burrowing, and clay illuviation, referred to as pedoplasmation (Fedoroff 2009). The pedoplasmation activities in the region of transition separating soil and saprolite, as well as the formation of clays along with the pore network, are closely tied to mineral assemblage alterations caused by primary mineral dissolution. Channels were detected in different layers in the transition zone across the saprolite along with the overlying soil and were therefore associated with a higher level of pedoplasmation, owing mostly to biological activity in the transformation between the soil as well as the saprolite (dos Santos et al. 2018). Physical characteristics of pedoplasmated zones were juxtaposed with the characteristics of indurated or packed subsurface materials with fluvial and aeolian origins by Kew et al. (2010). Based on SEM and microprobe investigations, they concluded that these subsurface materials have a less porous micro mass instead of saprolite, which exhibits pedoplasmation, may be due to closely packed clay minerals.

L1: Rocks and minerals

L2: Disintegration (physical weathering)

L₃: Formation of saprolite

L₄: Decomposition (chemical weathering)

L₅: Differentiation of horizons (Major horizons-

O, A, B, C, R

L₆: Particle re-orientation (illuviation

L7: Soil aggregation

L₈: Mature soil profile

Fig 2. Step-by-step depiction of soil weathering and development with pedoplasmation

For instance, weathering is more severe in black shales as opposed to siltstones. The latter are moderately worn subangular pieces overlaid with less coarse material with empty cracks, whilst black shales have generalized fissures followed by simultaneous linear disintegration where pedoplasmation appears to be promoted. Pyrite crystals were also discovered in this profile above silex pieces, implying that pyrite is connected with black shales (Ruiz 2019).

Techniques for pedo-feature investigation

Attribution of micropedo-complex can be executed with different approaches, which overlies various pedo-characters that are indispensable in the study of micropedo environment. There are distinct techniques used in the examination of micro pedological features (Table 4).

Table 4. Various techniques applied for evaluation of pedo-characters

Analytical techniques	Operational framework	Key outcomes	Developed by
Oedometer- collapse tests	Collapsibility of the loess using single-oedometer and double - oedometer	Varying amounts of collapsibility may be caused by mineral concentrations and microstructural factors including pore size distribution and particle sphericity.	MWRPRC 1999

G 11 .1 .2		D 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	T . 1 501 -
Combination of spatial time domain reflectometry (TDR) and surface electrical resistivity tomography (ERT)	Spatial resolution for vertical soil water content (1D TDR device - Campbell Scientific TDR100), surface electrical resistivity (2D ten-channel SYSCAL Pro Switch resistivity meter - IRIS Instruments, France), and seasonal soil temperature (ERT surveys) Clay minerals in the loess using Bruker D8 Advance X -ray diffractometer	Pellucid horizontal and vertical fluctuations in soil electrical resistivity were seen in 2D ERT pictures, and these variations were quantitatively correlated with changes in soil water content. Surface ERT provides 2D information integrated across a larger area of soil than spatial TDR does. The accuracy of soil water monitoring can be increased altogether with a higher spatial resolution when surface ERT and spatial TDR approaches are combined. Calcite was found at 3.03 x 10 ⁻¹⁰ , 2.28 x 10 ⁻¹⁰ , 1.91 x 10 ⁻¹⁰ and 1.87 x 10 ⁻¹⁰ , quartz at 3.34 x 10 ⁻¹⁰ , 4.26 x 10 ⁻¹⁰ , 1.82 x 10 ⁻¹⁰ , and	Fan et al. 2015 NEA 2018
		2.45×10^{-10} and plagioclase at 3.19 x 10^{-10} ,	
		4.03×10^{-10} , and 3.76×10^{-10} .	
X-Ray microtomography	X-ray images of an angular Leighton Buz zard Sand (LBS) specimen and a spherical glass bead (GB) specimen are examined non-destructively (by synchrotron micro-tomography at the BL13W beam-line of the Shanghai Synchrotron Radiation Facility (SSRF))	During the pre-peak shearing phase, there is a n otable shift in the mean coordination number (CN), which subsequently stabilizes after reaching its peak. This CN pattern is consistent across particles of different sizes as shearing progresses. During shear, branch vectors in rounded grain boundaries become aligned with the loading direction, whereas in angular boundaries, they concentrate horizontally, departing from their initial nearly isotropic distribution.	Cheng and Wang 2018
3D microstructure characterization	Particle size distribution, pore size distribution, particle morphology, particle orientation and pore orientation	The range of particle size is $10 \times 10^{-6} - 50 \times 10^{-6}$ while pore size of particles is 2×10^{-6} to 4×10^{-6} . In the morphological aspect increase in diameter causes reduced sphericity. The orientation of 67% of the particles lies between 0° and $4 \times 5^{\circ}$ although pores oriented in direction $> 4 \times 5^{\circ}$	Wei <i>et al.</i> 2019
Soil Microstructure Analysis System (SMAS)	Geometrical and morphological indices of soil pore areas, perimeters, equivalen t lengths, equivalent diameters, roundness, morphological ratios, the number of components in a given area, apparent porosity, anisotropic rates, fractal dimensions, and probability densities, among others and particles at the microscale using SEM	Based on the measured values of roundness and morphology ratio, a classification criterion for the form category of sand particles is given.	Tang et al. 2020
Spectral induced polarization (SIP) tomography.	Water content, particle size properties, cation exchange capacity (CEC), and permeability in the field	A potent geophysical technique for visualizing soil features is Spectral Induced Polarization (SIP), which operates in the frequency range of 0.25–25 Hertz.	Revil <i>et al</i> . 2021

Different techniques encompass a wide range of methodologies, from traditional tests like oedometer-collapse tests and X-ray diffraction to more advanced approaches like X-ray micro-tomography, 3D microstructure characterization, and Spectral Induced Polarization (SIP) tomography. These methods offer valuable insights into soil properties such as collapsibility, mineral composition, microstructure, particle size distribution, pore size distribution, and more. Researchers have applied these techniques to study diverse aspects of soil behavior, including water

content, electrical resistivity, particle morphology, and even geophysical parameters like cation exchange capacity (CEC) and permeability. By employing these analytical tools, scientists can gain a comprehensive understanding of soil properties and behavior, which is crucial for various applications in geology, agriculture, and environmental science.

Investigation on the properties of granular materials (Table 5) adhere to the circularity, roundness, compactness, sphericity, aspect ratio and mod-ratio which altogether describes the shape of the material (Cox and Budhu 2008).

Table 5. Archive of grain shape characterization approaches (Cox and Budhu 2008)

Shape	Definition	Salient features	Reference(s)
characteristic			
Sphericity	Ratio of grain volume to	2-D chart developed to facilitate application	Krumbein 19 ₄ 1
Sphericity	that of smallest	(Rittenhouse 19 ₄ 3)	
	circumscribing sphere	Measurement relates to form	
		Measurement in computer programs differ from	
		the original definition	
Roundness	Ratio of the curvature of	2-D chart developed to facilitate application	Wadell 1932
	grain edges/corners to	(Krumbein 19 ₄ 1)	
	overall grain	Measurement relates to angularity and texture	
		Measurement in computer programs differ from	
		the original definition	
Fourier series	Shape (wave of profile)	Unable to correctly analyze highly irregular or re -	Ehrlich and Weinberg
	estimated by expansion of	entrant particles	1970
	periphery radius as		
	function of angle of		
	grain's center of gravity		
	by Fourier series		
Fourier	Calculation of shape	Problems with other Fourier series methods are	Beddow and Vetter
descriptors	descriptors from the	overcome, i.e. re-entrant particles	1977
	Fourier series coefficients	Applies FFT algorithm and utilizes boundary	
		information only	
Fractal	2-D value ranging from	Highly dependent on segment lengths chosen to	Kaye 1982
dimension	0–1; describes the ability	measure profile	
	of a rugged boundary to	Measurement relates more to roughness or texture	
	occupy void space	of grain rather than form	

Various analytical techniques are used to study soil properties, including mineral composition, microstructure, and geophysical parameters. These techniques are valuable for characterizing soils as they contribute to the appraisal of the processes and factors involved in the formation of soils from parent materials,

whereas the analytical techniques discussed are tools used to analyze and study existing soils.

Conclusion

The intricate canvas of soil formation is portrayed with the labyrinthine reciprocity of lithic

fabric, saprolite and pedoplasmation. The dynamic processes of pedological transformation exist from the initial stages of rock formation to the development of vertically differentiated horizons and distinct actions that shape soil morphology. The manifestation of this process is evident through transitions from saprolite fabric to B horizons, often characterized by repeated micro-scale shears resulting in the formation of alternate lithic and soil fabrics. Over the time, lithic fabric has been significantly preserved by iron oxide-rich regions, whereas mineral recrystallization and modification cause the lithic fabric to change into soil fabric. Investigations into micromorphology further illuminate the complex characteristics and transformations taking place within saprolite profiles. Weathering-induced fractures, changes in mineral content, and the creation of crevices and secondary minerals are characteristics of how the original lithic fabric has changed. Saprolite profiles exhibit variability, reflecting bedrock types and climatic conditions. The weathering of profiles corresponds to upper and lower saprolites, where chemical weathering exceeds erosion rates, resulting in the accumulation of weathered products. Micromorphological characteristics vary with pedogenic processes, influencing fabric, mineralogy, and degree of weathering. The diverse rock types, from igneous, metamorphic and sedimentary, offer unique scenarios for soil formation. Each rock type undergoes specific transformations, producing a spectrum of features from mineral alterations to void formations. This intricate interaction between rock characteristics and environmental conditions underscores the complexity of soil development. Different techniques range from traditional methods like X-ray diffraction for identifying clay minerals to advanced methods like Spectral Induced Polarization (SIP) tomography for visualizing soil features in the field, which are crucial for advancing our understanding of soil behavior, composition, and geophysical properties. This exploration into the lithic fabric, saprolite, and pedoplasmation unveils the remarkable processes that shape our soils system.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

Abreu, M.M. and Vairinho, M. (1990). Amphibole alteration to vermiculite in a weathering profile of gabbro-diorite. In Douglas, L.A. (ed.), Soil Micromorphology: A Basic and Applied Science. Developments in Soil Science, Volume 19, Elsevier, Amsterdam, 493–500.

Akker, I.V., Berger, A., Zwingmann, H., Todd, A., Schrank, C.E., Jones, M.W., Kewish, C.M., Schmid, T.C. and Herwegh, M. (2021). Structural and chemical resetting processes in white mica and their effect on K-Ar data during low temperature metamorphism. Tectonophysics. 800, 228708. https://doi.org/10.1016/j.tecto.2020.228708

Anda, M. and Dahlgren, R.A. (2020). Mineralogical and surface charge characteristics of Andosols experiencing long-term, land-use change in West Java, Indonesia. *Soil Science and Plant N u t r i t i o n* . 6 6 , 7 0 2 - 1 3 . https://doi.org/10.1080/00380768.2020.182075

Anderson, S.P. (2019). Breaking it down: mechanical processes in the weathering engine. Elements: *An International Magazine of Mineralogy, Geochemistry, and Petrology*. 15(4), 247-252. https://doi.org/10.2138/gselements.15.4.247.

Andrade, G.R., de Azevedo, A.C., Lepchak, J.K. and Assis, T.C. (2019). Weathering of Permian sedimentary rocks and soil clay minerals transformations under subtropical climate, southern Brazil (Paraná State). *Geoderma*. 336, 3 1 - 4 8 . https://doi.org/10.1016/j.geoderma.2018.08.02 6

Baidya, A.S., Pal, D.C. and Upadhyay, D. (2019) Chemical weathering of garnet in Banded Iron 12₄ Rohith. A K. et al.

Formation: Implications for the mechanism and sequence of secondary mineral formation and mobility of elements. *Geochimica et Cosmochimica Acta*. 265:198-220. https://doi.org/10.1016/j.gca.2019.08.037

- Bakhsh, A.L. (2019) Characteristics of Supergene Alteration In The Binamar Area, Ardabil, NW Iran.Matrix. 5, 2535-2539.
- Basibuyuk, Z. and Yalcin, H. (2019) Mineralogy, petrography and origin of hydrothermal alteration in Eocene magmatites in Central Anatolia. *Bulletin of the Mineral Research and Exploration*. 158, 141-164. https://dx.doi.org/10.19111/bulletinofmre.461
- Beddow, J.K. and Vetter, A.F. (1977) The use of classifiers in morphological analysis of particulates. *Journal of Powder and Bulk Solids Technology*. 1, 42–45.
- Blattmann, T.M., Wang, S.L., Lupker, M., Märki, L., Haghipour, N., Wacker, L., Chung, L.H., Bernasconi, S.M., Plötze, M. and Eglinton, T.I. (2019) Sulphuric acid-mediated weathering on Taiwan buffers geological atmospheric carbon sinks. Scientific reports 9(1), 2945. https://doi.org/10.1038/s41598-019-39272-5
- Bigot, F. (2021) Cu-Au Skarn Mineralizations of the Archean East Sullivan Stock, Abitibi Greenstone Belt, Quebec, Canada (Doctoral dissertation, Université du Québec à Montréal). 182.
- Biondino, D., Borrelli, L., Critelli, S., Muto, F., Apollaro, C., Coniglio, S., Tripodi, V. and Perri, F. (2020). A multidisciplinary approach to investigate weathering processes affecting gneissic rocks (Calabria, southern Italy). *C a t e n a* . 1 8 7 , 1 0 4 3 7 2 . https://doi.org/10.1016/j.catena.2019.104372.
- Bonnet, M., Caner, L., Siitari-Kauppi, M., Mazurier, A., Mexias, A.S., Dani, N. and Sardini, P. (2022). Weathering of Viamão granodiorite, South Brazil: Part 1–Clay minerals formation and increase in total porosity. Geoderma. 424,115968.

- https://doi.org/10.1016/j.geoderma.2022.11596
- Bradwell, T. and Ballantyne, C.K. (2021). The Far Northwest: Sutherland, Assynt and Coigach. In *Landscapes and Landforms of Scotland*. 233-250. https://doi.org/10.1007/978-3-030-71246-4
- Briški, M., Stroj, A., Kosović, I. and Borović, S. (2020) Characterization of aquifers in metamorphic rocks by combined use of electrical resistivity tomography and monitoring of spring hydrodynamics. *Geosciences*. 10, 137. https://doi.org/10.3390/geosciences10040137
- Broz, A. (2022). Ancient Soils of Earth and Mars (Doctoral dissertation, University of Oregon).

 1 6 6

 https://scholarsbank.uoregon.edu/xmlui/handle/
 1794/28094
- Budihal, R. and Pujar, G. (2018). Major and trace elements geochemistry of laterites from the Swarnagadde plateau, uttar Kannada district, Karnataka, India. *Journal of Geosciences and Geometric Geometric Systems* 6: 12-20. https://doi.org/10.12691/jgg-6-1-2
- Budihal, R.Y. and Manjunatha, S. (2023) Geological setting, petrography and mineralogy of laterites from Swarnagadde plateau of Western Ghats, Karnataka. *International Journal of Geography, Geology and Environment.* 5, 25-31 https://doi.org/10.22271/27067483.2023.v5.i1a .137
- Buss, H.L., Sak, P.B., Webb, S.M. and Brantlet, S.L. (2008) Weathering of the Rio Blanco quartz diorite Luquillo Mountains, Puerto Rico: coupling, oxidation, dissolution and cracking *Geochimica et Cosmochimica Acta*. 72: 4488–4507.
- Cardoso, A.R., Nogueira, A.C., Rabelo, C.E., Soares, J.L. and Goes, A.M. (2019) Multi-approach provenance in stratigraphy: Implications for the Upper Mesozoic evolution of the Parnaiba Basin, NE Brazil. *Journal of South American E arth Sciences*. 96, 102386. https://doi.org/10.1016/j.jsames.2019.102386

- Castro, N.F., Mozer, A.G., Pinto, A.C., Felix, C.C., Mansur, K.L., Silva, R.E. and Ribeiro, R.C. (2022) Leptinito gneiss: The heritage stone of the old town, Rio de Janeiro, Brazil. Resources Policy 75, 1024 93.
- Cerri, R.I., Rosolen, V., Reis, F.A., Filho, A.J., Vemado, F., do Carmo-Giordano, L. and Gabelini, B.M. (2020) The assessment of soil chemical, physical, and structural properties as landslide predisposing factors in the Serra do Mar mountain range (Caraguatatuba, Brazil). Bulletin of Engineering Geology and the E n v i r o n m e n t . 79, 3307-20. https://doi.org/10.1007/s10064-020-01791-1
- Certini, G., Wilson, M.J., Hillier, S.J., Fraser, A.R. and Delbos, E. (2006) Mineral weathering in trachydacitic derived soils and saprolites involving formation of embryonic halloysite and gibbsite at Mt. Amiata, Central Italy. 133, 173–190.
- Chandran, P., Ray, S., Paul, R., Vasu, D., Karthikeyan, K. and Anantwar, S. (2021) Ferruginous Soils of Humid Tropical Andaman and Nicobar Islands: their Pedology, Mineralogy and Edaphology. *Clay Research*. 40(1), 27-40.
- Cheng, Z. and Wang, J. (2018) Experimental investigation of inter-particle contact evolution of sheared granular materials using X-ray micro-tomography. Soils and Foundations. 5 8 (6) , 1 4 9 2 1 5 1 0 . https://doi.org/10.1016/j.sandf.2018.08.008
- Chesworth, W., Dejou, J., Larroque, P. and Garcia Rodeja, E. (2004) Alteration of olivine in a basalt from central France. Catena. 56, 21–30. https://doi.org/10.1016/j.catena.2003.10.018
- Clift, P.D. (2020) Asian monsoon dynamics and sediment transport in SE Asia. *Journal of Asian E arth Sciences*. 195, 104 352. https://doi.org/10.1016/j.jseaes.2020.104 352
- Cox, M.R. and Budhu, M. (2008) A practical approach to grain shape quantification. *Journal of Engineering Geology*. 96(1-2), 1-16. https://doi.org/10.1016/j.enggeo.2007.05.005
- Dasgupta, S. and Ghosh, P. (2018) Freshwater

- carbonates within a Late Triassic siliciclastic fluvial system in a Gondwana rift basin: The Maleri Formation, India. *Sedimentary geology*. 3 7 3 , 2 5 4 7 1 . https://doi.org/10.1016/j.sedgeo.2018.06.011
- de Freitas, D.F., Ker, J.C., da Silva-Filho, L.A., Pereira, T.T., de Souza, O.F. and Schaefer, C.E. (2021) Pedogeomorphology and paleoenvironmental implications of large termite mounds at the Brazilian semiarid landscape. *Geomorphology*. 3 8 7: 1 0 7 7 6 2. https://doi.org/10.1016/j.geomorph.2021.1077
- de Luchi, M.G., Dopico, C.I., Cutts, K.A., Schulz, B., Siegesmund, S., Wemmer, K. and Montenegro, T. (2021) The Conlara Metamorphic Complex: Lithology, provenance, metamorphic constraints on the metabasic rocks, and chime monazite dating. *Journal of South American Earth Sciences*. 106: 103065. https://doi.org/10.1016/j.jsames.2020.103065
- da Silva, L.F.V., dos Santos, J.C.B., de Oliveira, C.S. and de Azevedo, A.C. (2022) Saprolite: A bibliometric study from 1990 to 2020. *Journal of South American Earth Sciences*. 115: 103729. https://doi.org/10.1016/j.jsames.2022.103729
- de Sousa, J.E., Andrade, G.R., de Araújo-Filho, J.C., dos Santos, J.C., Corrêa, M.M., Ferreira, T.O., de Camargo, P.B., Araújo, J.K., da Silva, A.H., Sousa, M.G. and de Souza Júnior, V.S. (2023) Weathering and mineral alteration of metamorphic rocks and genesis of Planosols along a rainfall gradient in Borborema Province, Northeast Brazil. *Geoderma Regional*. 33, e 0 0 6 4 2 . https://doi.org/10.1016/j.geodrs.2023.e00642
- Dill, H.G. and Kolb, J. (2019) Carbonate-related metallic and non-metallic mineralization within and proximal to granites (Fichtelgebirge Pluton, Germany): "Mantle-crust marker mineralization". Ore Geology Reviews. 104, 46-7 1 . https://doi.org/10.1016/j.oregeorev.2018.10.01

- dos Santos, J.C., Le Pera, E., de Souza Júnior, V.S., de Oliveira, C.S., Juilleret, J., Corrêa, M.M. and de Azevedo, A.C. (2018). Porosity and genesis of clay in gneiss saprolites: The relevance of saprolithology to whole regolith pedology. *G e o d e r m a* . 3 1 9 , 1 3 . https://doi.org/10.1016/j.geoderma.2017.12.03
- Drees, L.R., Wilding, L.P, Owens, P.R., Wu, B., Perotto, H. and Sierra, H. (2003). Steepland resources: characteristics, stabilty and micromorphology. *Catena*. 54, 619–636.
- Egli, M., Bösiger, M., Lamorski, K., Sławiński, C., Plötze, M., Wiesenberg, G.L., Tikhomirov, D., Musso, A., Hsu, S.Y. and Raimondi. S. (2021). Pedogenesis and carbon sequestration in transformed agricultural soils of Sicily. G e o d e r m a 4 0 2 , 1 1 5 3 5 5 . https://doi.org/10.1016/j.geoderma.2021.1153 55
- El Aref, M.M. (2023). The Phanerozoic Stratabound/Stratiform Ore Deposits of Egypt: Their Mode of Occurrence and Formation in Accordance with the Phanerozoic Geological Evolution. In The Phanerozoic Geology and Natural Resources of Egypt. Advances in Science, Technology & Innovation. Springer, Cham. 501-563. https://doi.org/10.1007/978-3-030-95637-0 18
- El Desoky, H.M., Shahin, T.M., Abu El-Leil, I. and Shafea, E.A. (2020). Geology and mapping of laterites, South Eastern Desert, Egypt: Based on field and ASTER data approach. *Geological Journal*. 55, 4252-64. https://doi.org/10.1002/gj.3640
- Ehrlich, R. and Weinberg, B. (1970). An exact method for characterization of grain shape. Journal of Sedimentary Research. 40 (1), 205–212. https://doi.org/10.1306/74D71F1E-2B21-11D7-8648000102C1865D
- Erens, H. (2015). Origin and implications of variation in properties within Macrotermes falciger mounds (Doctoral dissertation, Ghent University). 184
- Fan, J., Scheuermann, A., Guyot, A., Baumgartl, T. and Lockington, D.A. (2015). Quantifying

- spatiotemporal dynamics of root-zone soil water in a mixed forest on subtropical coastal sand dune using surface ERT and spatial TDR. *Journal of Hydrology*, 523, 475-488. https://doi.org/10.1016/j.jhydrol.2015.01.064
- Fedoroff, N. (2009). Weathering and Development of Chemically Mature Soils. Earth System: *History and Natural Variability*. 2, 160.
- Finlay, R.D., Mahmood, S., Rosenstock, N., Bolou-Bi, E.B., Köhler, S.J., Fahad, Z., Rosling, A., Wallander, H., Belyazid, S., Bishop, K. and Lian, B. (2020). Reviews and syntheses: Biological weathering and its consequences at different spatial levels—from nanoscale to global scale. *Biogeosciences*, 17, 1507-1533. https://doi.org/10.5194/bg-17-1507-2020
- Flach, K.W., Cady, J.G. and Nettleton, W.D. (1968).

 Pedogenic alteration of highly weathered parent materials. Transactions of the 9th International Congress of Soil Science, Volume IV, Adelaide. 34 3-351.
- Garcia, A., Aguilar, J. and Delgado, M. (1974). Micromorphological study of soils developed on serpentine rock from Sierra de Carratraca (Malaga, Spain). In Rutherford, G.K. (ed.), Soil Microscopy. The Limestone Press, Kingston, Ontario. 394–407.
- Gawad, A.E.A., Skublov, S.G., Levashova, E.V. and Ghoneim, M.M. (2022). Geochemistry and U–Pb age dating of zircon as a petrogenetic tool for magmatic and hydrothermal processes in Wadi Ras Abda syenogranite, Eastern Desert, Egypt. *Arabian Journal for Science and Engineering*. 47, 7351-7365. https://doi.org/10.1007/s13369-021-06319-7
- Ghosh, S. and Guchhait, S.K. (2020). Laterites of the Bengal Basin: Characterization, geochronology and evolution (p. Basel). Switzerland: Springer. 1-130. https://doi.org/10.1007/978-3-030-22937-5
- Gu, S., Wan, G. and Mao, J. (2007). Sodic metasomatism in a dacite weathering profile in Pinxiang, Guangxi, China. *Chinese Journal of Geochemistry*. 26, 434-438.

- Hack, H.R.G. (2020). Weathering, erosion, and susceptibility to weathering. Soft Rock Mechanics and Engineering. 291-333. https://doi.org/10.1007/978-3-030-29477-9 11
- Hancock, G.R., Duque, J.M. and Willgoose, G.R. (2020)
 Mining rehabilitation—Using geomorphology to engineer ecologically sustainable landscapes for highly disturbed lands. *Ecological Engineering*. 155, 105836. https://doi.org/10.1016/j.ecoleng.2020.105836
- Hassan Ahmed, A., 2022. Hydrothermal Mineral Deposits in Volcano-Sedimentary Environments. In: Mineral Deposits and Occurrences in the Arabian-Nubian Shield. Environ. Earth and Environmental Sciences Library. Springer, Cham. https://doi.org/10.1007/978-3-030-96443-66
- Hayes, J.L., Riebe, C.S., Holbrook, W.S., Flinchum, B.A. and Hartsough, P.C. (2019). Porosity production in weathered rock: Where volumetric strain dominates over chemical mass loss. *Science Advances*. 5, 0834.
- Hayes, S.M., Webb, S.M., Bargar, J.R., O'Day, P.A., Maier, R.M. and Chorover, J. (2012). Geochemical weathering increases lead bioaccessibility in semi-arid mine tailings. *Environmental Science and Technology*. 4 6(11), 5834-5841.
- Helvacı, C., Oyman, T., Gündoğan, I., Sözbilir, H., Parlak, O., Kadir, S. and Güven, N. (2018). Mineralogy and genesis of the Ni–Co lateritic regolith deposit of the Çaldağ area (Manisa, western Anatolia), Turkey. *Canadian Journal of Earth Sciences*. 55, 252-71.
- Holbrook, W.S., Marcon, V., Bacon, A.R., Brantley, S.L., Carr, B.J., Flinchum, B.A., Richter, D.D. and Riebe, C.S. (2019). Links between physical and chemical weathering inferred from a 65-m-deep borehole through Earth's critical zone. Scientific Reports. 9, 4495. https://doi.org/10.1038/s41598-019-40819-9
- Ibraimo, M.M., Schaefer, C.E.G.R., Ker, J.C., Lani, J.L., Rolim-Neto, F.C., Albuquerque, M.A. and Miranda, V.J. (2004). Genese e micromorfologia de solos sob vegetação

- xeromo' rfica (caatinga) na regia dos Lagos (RJ). Revista Brasileira de Ciencia do Solo. 28, 695–712.
- Iglesias-Martínez, M., Ordóñez-Casado, B. and Berrezueta, E. (2020). Optical image and microchemical analysis of gold grains from a weathered profile of the Minvoul greenstone belt, northern Gabon. Geological Magazine.

 1 5 7 , 3 0 7 2 0 . https://doi.org/10.1017/S0016756819000827
- Jimenez-Espinosa, R., Vazquez, M. and Jimenez-Millan, J. (2007). Differential weathering of granitic stocks and landscape effects in a Mediterranean climate, Southern Iberian Massif (Spain). *Catena*. 70, 24 3–252.
- Kaye, B.H., 1982. Review of new methods for characterizing the shape and texture of fine particles. *Journal of Powder Technology*. 6 (2), 1–4.
- Kew, G.A., Gilkes, R.J. and Evans, D. (2010). Relationships between fabric, water retention, and strength of hard subsoils in the south of Western Australia. *Australian Journal of Soil Research*. 48, 167-177. https://doi.org/10.1071/SR09080
- Kogel-Knabner and Amelung, W. (2021). Soil organic matter in major pedogenic soil groups. *Geoderma*. 384, 114785. https://doi.org/10.1016/j.geoderma.2020.114785
- Kooistra, M.J. and Pulleman, M.M. (2018). Features related to faunal activity. In Stoops, G, Marcelino, V. Mees, F (eds.), Interpretation of Micromorphological Features of Soils and Regoliths. Second Edition, Elsevier, Amsterdam. 4 4 7-4 69.
- Kuhn, P., Aguilar, J., Miedema, R. and Bronnikova, M. (2018). Textural pedofeatures and related horizons. In Interpretation of micromorphological features of soils and regoliths. 377-423. Elsevier. https://doi.org/10.1016/B978-0-444-63522-8.00014-0
- Krumbein, W.C. (1941). Measurement and geological significance of shape and roundness of

sedimentary particles. J. Sediment. Petrol. 11: 6₄ –72. https://doi.org/10.1306/D42690F3-2B26-11D7-8648000102C1865D

- Le Pera, E., Critelli, S. and Sorriso-Valvo, M. (2001).

 Weathering of gneiss in Calabria, southern

 Italy. *Catena*. 42(1), 1-15.

 https://doi.org/10.1016/S0341-8162(00)00117-X
- Malla Noubisi, C.H., Yongue-Fouateu, R., Gentry, F.C., Nguimatsia Dongmo, W.F., Nkoumbou, C., 2021. Petrography and geochemistry of weathered pyroxenite boulders from Mamb, Ngong and Nkolmbong (Pan-African Yaoundé group, Cameroon): tracking the Ni, Co, Cr and Cu mineralization processes during the alteration of ultramafic rocks, *Arabian Journal of Geosciences*. 14, 868. https://doi.org/10.1007/s12517-021-07191-3
- Manica, M.A., Ciantia, M.O. and Gens, A. (2020). On the stability of underground caves in calcareous rocks due to long-term weathering. *Rock Mechanics and Rock Engineering*. 53, 3885-901. https://doi.org/10.1007/s00603-020-02142-y
- Marcelino, V., Schaefer, C.E.G.R. and Stoops, G. (2018). Oxic and related materials. In Stoops, G., Marcelino, V. & Mees, F. (eds.), Interpretation of Micromorphological Features of Soils and Regoliths. Second Edition. Elsevier, Amsterdam. 663-689.
- Maurizot, P., Sevin, B., Lesimple, S., Collot, J., Jeanpert, J., Bailly, L., Robineau, B., Patriat, M., Etienne, S. and Monnin C. (2020). Chapter 9 mineral resources and prospectivity of non-ultramafic rocks of New Caledonia. Geological Society, London, Memoirs 51, 215-45. https://doi.org/10.1144/M51-2016-9
- Mei, H., Jian, X., Zhang, W., Fu, H. and Zhang, S. (2021). Behavioral differences between weathering and pedogenesis in a subtropical humid granitic terrain: Implications for chemical weathering intensity evaluation. *C a t e n a* . 2 0 3 , 1 0 5 3 6 8 . https://doi.org/10.1016/j.catena.2021.105368

- Menezes, M.N., Dal'Bó, P.F., Smith, J.J., Rodrigues, A. G., Rodríguez-Berriguete, Á. (2022). Maastrichtian atmospheric p CO2 and climatic reconstruction from carbonate paleosols of the Marília Formation (southeastern Brazil). *Journal of Sedimentary Research*. 92, 775-796. https://doi.org/10.2110/jsr.2021.060
- Meunier, A., Velde, B., Dudoignon, P., Beaufort, D. (1983). Identification of weathering and hydrothermal alteration in acidic rock: petrology and mineralogy of clay minerals. *Sciences Geologiques, Memoire*. 72, 93–99.
- Molenaar, N. and Felder, M. (2018). Clay cutans and the origin of illite rim cement: an example from the siliciclastic Rotliegend sandstone in the Dutch Southern Permian Basin. *Journal of Sedimentary Research*. 88, 641-58. https://doi.org/10.2110/jsr.2018.33
- Muggler, C.C., Buurman, P. and van Doesburg, J.D.J. (2007). Weathering trends and parent material characteristics of polygenetic Oxisols from Minas Gerais, Brazil. 1. Mineralogy. *Geoderma*, 138, 39-48.
- Muller, J.P. and Bocquier, G. (1987). Textural and mineralogical relationships between ferruginous nodules and surrounding clayey matrices in a laterite from Cameroon. In Schultz, L.G., van Olphen, H. and Mumpton, F.A. (eds.), Proceedings of the International Clay Conference. Denver. 186-194.
- Mulyanto, B. and Stoops, G. (2003). Mineral neoformation in pore spaces during alteration and weathering of andesitic rocks in humid tropical Indonesia. *Catena*. 54, 385–391.
- Mulyanto, B., Stoops, G. and Van Ranst, E. (1999). Precipitation and dissolution of gibbsite during weathering of andesitic boulders in humid tropical west Java, Indonesia. *Geoderma*, 89, 287–306.
- MWRPRC (1999). Specification of soil test, SL 237-1999. Ministry of Water Resources of the People's Republic of China. China Water Resources and Hydropower Press, Beijing (in Chinese).

- Nadeau, O. and Harris, J. (2019). Remobilization and adsorption of colloidal gold on nano-particulate chlorite at the Hardrock Archean orogenic gold deposits: A new tool for gold exploration.

 Journal of Geochemical Exploration. 204, 1812 0 5 .

 https://doi.org/10.1016/j.gexplo.2019.05.004
- Nahon, D.B. (1991). Introduction to the Petrology of Soils and Chemical Weathering. John Wiley & Sons, New York, p. 313.
- NEA (2018). Analysis method for clay minerals and ordinary non-clay minerals in sedimentary rocks by the X-ray diffraction, SY/T 5163–2018. National Energy Administration, Beijing (in Chinese).
- Neves, L.V., de Sousa, J,E., dos Santos, J.C., de Araújo Filho, J.C., Corrêa, M.M., Sousa, M.G., Fracetto, F.J., Fracetto, G.G., Araujo, J.K., Freire. G.A. and Ferreira, T.O. (2023). Weathering of gneiss saprolites and formation of Planosols under semiarid climate (NE Brazil). *Journal of South American Earth S c i e n c e s* . 1 2 3 , 1 0 4 2 0 6 . https://doi.org/10.1016/j.jsames.2023.104206.
- Okrusch, M., Frimmel, H.E., Okrusch, M. and Frimmel, H.E. (2020). Igneous rocks. Mineralogy: An Introduction to Minerals, Rocks and Mineral Deposits. In Mineralogy Springer Textbooks in Earth Sciences, Geography and Environment. Springer, Berlin, Heidelberg. 24 9-74. https://doi.org/10.1007/978-3-662-57316-7_13
- Oludare, F.V. (2017). Effects of weathering and erosion on the geochemistry of rocks and soils. *International Journal of Scientific Research in Science and Technology*, 3(6): 7₄-80.
- Osman, K.T. (2013). Factors and processes of soil formation. In: Soils. Springer, Dordrecht. 17-30. https://doi.org/10.1007/978-94-007-5663-2_3
- Owliaie, H.R., Adhami, E., Ghiri, M.N. and Shakeri, S. (2018). Pedological investigation of a Litho-Toposequence in a semi-arid region of southwestern Iran. *Eurasian Soil Science*. 51, 1447-61.

- Oziegbe, E.J. and Oziegbe O. (2023). Retrograde Assemblages of Gneisses at Arigidi and Erusu Areas of Southwestern Nigeria. In IOP Conference Series: Earth and Environmental S c i e n c e . 1 1 9 7 , 0 1 2 0 1 0 . https://doi.org/10.1088/1755-1315/1197/1/012010
- Pawlik, Ł. and Šamonil, P. (2018). Biomechanical and biochemical effects recorded in the tree root zone–soil memory, historical contingency and soil evolution under trees. Plant and Soil. 4 26, 109-134. https://doi.org/10.1007/s11104-018-3622-9
- Pellant, C. and Pellant, H. (2020). Rocks and minerals. Princeton University Press. 137: 208
- Picanço, J., Mesquita, M.J. and Melo, L.L. (2019). Geotechnical and Mineralogical Properties of Granite Regolith Related to Nucleation Mechanisms of Debris Flows in Tropical Areas. *International Journal of Erosion Control*. E n g i n e e r i n g . 1 1 , 5 4 6 2 . https://doi.org/10.13101/ijece.11.54
- Pintaldi, E., D'Amico, M.E., Colombo, N., Martinetto, E., Said-Pullicino, D., Giardino, M. and Freppaz, M., (2021). Hidden paleosols on a high-elevation Alpine plateau (NW Italy): Evidence for Lateglacial Nunatak⁻. Glob. Planet Change. 2 0 7 , 1 0 3 6 7 6 . https://doi.org/10.1016/j.gloplacha.2021.10367 6
- Pitty, A. F. (2020). Geography and soil properties.

 R o u t l e d g e . 1 9 0 .

 https://doi.org/10.4324/9780429299315
- Popli, C., Singh, S., Rani, N. and Kumar, P. (2022). Role of endogenic and exogenic processes in the grusification and pedogenesis of weathered mantle, Precambrian granite of Dharwar Craton (India). *Arabian Journal of Geosciences*. 15,1502. https://doi.org/10.1007/s12517-022-10781-4
- Pospíšilova, L., Uhlík, P., Menšík, L., Hlisnikovský, L., Eichmeier, A., Horáková, E. and Vlček, V. (2021). Clay mineralogical composition and chemical properties of Haplic Luvisol developed

on loess in the protected landscape area Litovelské Pomoraví. European Journal of Soil Science, 72, 1128-1142.

- Rambabu, K., Banat, F., Pham, Q.M., Ho, S.H., Ren, N.Q. and Show, P.L. (2020). Biological remediation of acid mine drainage: Review of past trends and current outlook. Environmental Science and Ecotechnology. 2, 100024. https://doi.org/10.1016/j.ese.2020.100024
- Revil, A., Schmutz, M., Abdulsamad, F., Balde, A., Beck, C., Ghorbani, A. and Hubbard, S.S. (2021). Field-scale estimation of soil properties from spectral induced polarization tomography. *G e o d e r m a* . 4 0 3 , 1 1 5 3 8 0 . https://doi.org/10.1016/j.geoderma.2021.1153 80
- Rittenhouse, G. (1943). A visual method of estimating two-dimensional sphericity. *Journal of Sedimentary Petrology*. 13, 79–81
- Roylands, T., Hilton, R.G., Garnett, M.H., Soulet, G., Newton, J.A., Peterkin, J.L. and Hancock, P. (2022). Capturing the short-term variability of carbon dioxide emissions from sedimentary rock weathering in a remote mountainous catchment, New Zealand. *Chemical Geology*. 6 0 8 , 1 2 1 0 2 4 . https://doi.org/10.1016/j.chemgeo.2022.12102
- Ruiz, F. (2019). Weathering and incipient pedogenesis of Technosols constructed from dolomitic limestone mine spoils (Doctoral dissertation, Universidade de São Paulo) 75.
- Salama, W., González-Álvarez, I. and Anand, R. R. (2016). Significance of weathering and regolith/landscape evolution for mineral exploration in the NE Albany-Fraser Orogen, Western Australia. *Ore Geology Reviews*. 73, 5 0 0 2 1 . https://doi.org/10.1016/j.oregeorev.2015.07.02
- Sandeep, C.S., He. H. and Senetakis, K. (2022). Experimental and analytical studies on the influence of weathering degree and ground-environment analog conditions on the tribological behavior of granite. Engineering

- G e o l o g y . 3 0 4 , 1 0 6 6 4 4 . https://doi.org/10.1016/j.enggeo.2022.106644
- Scarciglia, F., Le Pera, E. and Critelli, S. (2005). Weathering and pedogenesis in the Sila Grande Massif (Calabria, South Italy): from field scale to micromorphology. *Catena*. 61, 1–29. https://doi.org/10.1016/j.catena.2005.02.001
- Schaefer, C.E.R., Ker, J.C., Gilkes, R.J., Campos, J.C., da Costa, L.M. and Saadi, A. (2002). Pedogenesis on the uplands of the Diamantina Plateau, Minas Gerais, Brazil: a chemical and micropedological study. *Geoderma*. 107, 24 3–269.
- Schaefer, C.E.G.R., Simas, F.N.B., Gilkes, R.J., Mathison, C., da Costa, L.M. and Albuquerque, M.A., (2008). Micromorphology and microchemistry of selected Cryosols from maritime Antarctica. *Geoderma*. 144, 104–115.
- Sequeira Braga, M.A., Paquet, H. and Begonha, H. (2002). Weathering of granites in a temperate climate (NW Portugal): granitic saprolites and arenization. *Catena*. 49, 41–56.
- Sevin, B., Maurizot, P., Cluzel, D., Tournadour, E., Etienne, S., Folcher, N., Jeanpert, J., Collot, J., Iseppi, M., Meffre S. and Patriat, M. (2020). Chapter 7 Post-obduction evolution of New Caledonia. Geological Society, London, M e m o i r s . 5 1 , 1 4 7 8 8 . https://doi.org/10.1144/M51-2018-74
- Shrivastav, P., Prasad, M., Singh, T.B., Yadav, A., Goyal, D., Ali, A. and Dantu, P.K. (2020). Role of nutrients in plant growth and development. In: Naeem, M., Ansari, A., Gill, S. (eds) Contaminants in Agriculture. Springer, Cham. 4 3-59. https://doi.org/10.1007/978-3-030-41552-5 2
- Sidkina, E.S., Soldatova, E.A., Cherkasova, E.V., Konyshev, A.A., Vorobey, S.S. and Mironenko, M.V. (2022). Fate of Heavy Metals in the Surface Water-Dump Rock System of the Mine Lupikko I (Karelia): Field Observations and Geochemical Modeling. *Water*. 14 (21), 3382. https://doi.org/10.3390/w14213382
- Simas, F.N.B., Schaefer, C.E.G.R., Fernandes Filho, E.I., Chagas, A.C. and Brandao, P.C. (2005). Chemistry, mineralogy and micropedology of

- highland soils on crystalline rocks of Serra da Mantiqueira, Southeastern Brazil. *Geoderma*. 125, 187–201.
- Singh, D., Verma, A.K., Choudhary, M., Mahawar, H., Thapa, S., Mehriya, M.L., 2023. Micronutrient Mobilizer Microorganisms: Significance in Crop Sustainability. In Bioinoculants: Biological Option for Mitigating global Climate Change. 115-145. https://doi.org/10.1007/978-981-99-2973-35
- Soloviev. S.G., Kryazhev. S.G. and Dvurechenskaya, S.S., (2020). Geology, mineralization, and fluid inclusion characteristics of the Agylki reduced tungsten (W-Cu-Au-Bi) skarn deposit, Verkhoyansk fold-and-thrust belt, Eastern Siberia: Tungsten deposit in a gold-dominant metallogenic province. *Ore Geology Reviews*. 1 2 0 , 1 0 3 4 5 2 . https://doi.org/10.1016/j.oregeorev.2020.1034 5 2
- Stoops, G. and Dedecker, D. (2006). Microscopy of undisturbed sediments as a help in planning dredging operations. A case study from Thailand. International Conference 'Hubs, Harbours and Deltas in Southeast Asia: Multidisciplinary and Intercultural Perspective'. Royal Academy of Overseas Sciences, Brussels. 193–211.
- Stoops, G., Langohr, R. and Van Ranst E (2020). Micromorphology of soils and palaeosoils in Belgium. An inventory and meta-analysis. *C a t e n a* . 1 9 4 , 1 0 4 7 1 8 . https://doi.org/10.1016/j.catena.2020.104718
- Stoops, G., Lambiv Dzemua, G., Van Ranst, E. and Mees, F. (2008). Micromorphology, mineralogy and chemistry of a laterite profile on serpentinite in South-East Cameroon. *Geophysical Research Abstracts*. 10, nEGU2008-A-00296.
- Stoops, G. and Marcelino, V. (2018). Lateritic and bauxitic materials. In Interpretation of micromorphological features of soils and regoliths Elsevier. 691-720. https://doi.org/10.1016/B978-0-444-63522-8.00024-3

- Stoops, G., Marcelino, V. and Mees, F. (2018). Micromorphological features and their relation to processes and classification: General guidelines and overview. In Interpretation of micromorphological features of soils and r e g o l i t h s . 8 9 5 9 1 7 . https://doi.org/10.1016/B978-0-4 4 4 -63522-8.00030-9
- Stoops, G. and Mees, F. (2018). Groundmass composition and fabric. In Interpretation of micromorphological features of soils and regoliths. Elsevier. 73-125. https://doi.org/10.1016/B978-0-444-63522-8.00005-X
- Stoops, G. and Schaefer, C.E.G.R. (2010).

 Pedoplasmation: formation of soil material. In Stoops, G., Marcelino, V. & Mees, F. (eds.),
 Interpretation of Micromorphological Features of Soils and Regoliths, Elsevier, Amsterdam. 69–79.
- Suhr, N., Schoenberg, R., Chew, D., Rosca, C., Widdowson, M. and Kamber, B.S. (2018). Elemental and isotopic behaviour of Zn in Deccan basalt weathering profiles: chemical weathering from bedrock to laterite and links to Zn deficiency in tropical soils. *Science of Total Environment*. 619, 1451-1463. https://doi.org/10.1016/j.scitotenv.2017.11.112
- Sycheva, S.A., Anisyutkin, N.K. and Khokhlova, O.S. (2022). Multilayered Lower Paleolithic site of Bairaki (Lower Dniester basin): Paleosols, palaeotopography, deposits, and lithic a s s e m b l a g e s . *C a t e n a* . 2 1 1 . https://doi.org/10.1016/j.catena.2021.105977
- Szymański, W. and Szkaradek, M., (2018). Andesite weathering and soil formation in a moderately humid climate: a case study from the Western Carpathians (southern Poland). *Carpathian Journal of Earth and Environmental Sciences*. 1 3 , 9 3 1 0 5 . http://dx.doi.org/10.264 71/cjees/2018/013/010
- Tang, C.S., Lin, L., Cheng, Q., Zhu, C., Wang, D.W., Lin,Z.Y. and Shi, B. (2020). Quantification and characterizing of soil microstructure features by image processing technique. *Computers and*

- *Geotechnics*. 128, 103817. https://doi.org/10.1016/j.compgeo.2020.10381
- Talapatra, A.K. and Talapatra, A.K. (2020). Geochemical Exploration of Mineral Deposits. Geochemical Exploration and Modelling of Concealed Mineral Deposits. 53-86. https://doi.org/10.1007/978-3-030-48756-0_3
- Tonui, E., Eggleton, T. and Taylor, G. (2003). Micromorphology and chemical weathering of K-rich trachyandesite and an associated sedimentary cover (Parkes, SE Australia). *Catena*. 53, 181–207
- Tsolova, V.T., Tomov, P.V., Nikova, I.P. and Petkova, G.P. (2019). Pedo-chemical Perturbations in Soils from Green Ecosystems of the Sofia City (Bulgaria). *Ecologia Balkanica*. 11(2), 37-51 http://eb.bio.uni-plovdiv.bg/
- Tsozue, D., Basga, S.D. and Nzeukou, A, N. (2020). Spatial variation of soil weathering processes in the tropical high reliefs of Cameroon (Central Africa). *Eurasian Journal of Soil Science*. 9, 92-104. https://doi.org/10.18393/ejss.659830
- Vepraskas, M.J., Lindbo, D.L. and Stolt, M.H. (2018).

 Redoximorphic features. In Interpretation of micromorphological features of soils and r e g o l i t h s , 4 2 5 4 4 5 .

 https://doi.org/10.1016/B978-0-4 4 4 -63522-8.00015-2
- Verrecchia, E.P. and Trombino, L. (2021). A visual atlas for soil micromorphologists. Springer Nature. 173. https://doi.org/10.1007/978-3-030-67806-7
- Vinnarasi, F., Srinivasamoorthy, K., Saravanan, K., Gopinath, S., Prakash, R., Ponnumani, G. and Babu, C. (2021). Chemical weathering and atmospheric carbon dioxide (CO2) consumption in Shanmuganadhi, South India: Evidences from groundwater geochemistry. *Environmental Geochemistry and Health.* 43, 771-790. https://doi.org/10.1007/s10653-020-00540-3
- Volf, M.R., Benites, V.M., Azevedo, A.C., Moraes, M.F., Tiritan, C.S. and Rosolem, C.A. (2023). Soil mineralogy and K reserves in soils from the

- Araguaia River valley, Brazil. *Geoderma Regional*. 33,00654.
- Wadell, H. (1932). Volume, shape and roundness of rock particles. *The Journal of Geology.* 4 0, 4 4 3–4 51. https://doi.org/10.1086/623964
- Warr, L.N. (2022). Earth's clay mineral inventory and its climate interaction: A quantitative assessment. Earth Science Reviews. 104 198. https://doi.org/10.1016/j.earscirev.2022.104 198
- Wei, T., Fan, W., Yu, N. and Wei, Y.N. (2019). Three-dimensional microstructure characterization of loess based on a serial sectioning technique. Engineering Geology. 261, 105265. https://doi.org/10.1016/j.enggeo.2019.105265
- Wray, R.A. and Sauro, F. (2017). An updated global review of solutional weathering processes and forms in quartz sandstones and quartzites. *Earth Science Reviews*. 171, 520-557. https://doi.org/10.1016/j.earscirev.2017.06.008
- Yuguchi, T., Shoubuzawa, K., Ogita, Y., Yag, K., Ishibashi, M., Sasao, E. and Nishiyama, T. (2019). Role of micropores, mass transfer, and reaction rate in the hydrothermal alteration process of plagioclase in a granitic pluton. American Mineralogist. Journal of Earth System S c i e n c e . 1 0 4 , 5 3 6 5 5 6 . https://doi.org/10.2138/am-2019-6786
- Zauyah, S., Schaefer, C.E.G.R. and Simas, F.N.B. (2018). Saprolites. In Stoops G, Marcelino V, Mees, F (eds.), Interpretation of Micromorphological Features of Soils and Regoliths. Second Edition, Elsevier, A m s t e r d a m . 3 7 5 7 . https://doi.org/10.1016/B978-0-444-53156-8.00004-0
- Zhu, Y., Lai, S.C., Qin, J.F., Zhu, R.Z., Zhang, F.Y., Zhang, Z.Z. and Gan, B.P. (2019). Petrogenesis and geodynamic implications of Neoproterozoic gabbro-diorites, adakitic granites, and A-type granites in the southwestern margin of the Yangtze Block, South China. *Journal of Asian E a r t h S c i e n c e s*. 183, 103977. https://doi.org/10.1016/j.jseaes.2019.103977