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Abstract : Intense human activity and climate change are gradually reducing the
water yield from the Pennar River basin, a crucial river basin in southern India.
Sustainable water use necessitates a thorough understanding of hydrological
processes. This study evaluated the performance of the Soil Water Assessment Tool
(SWAT), a semi-distributed river basin model, and the SWAT-Calibration and
Uncertainty Program (SWAT-CUP) using the Sequential Uncertainty Fitting (SUFI-
2) approach for calibration, sensitivity, and uncertainty analysis. The objectives were
to: 1) test SWAT's ability to simulate runoff, 2) conduct sensitivity and uncertainty
analyses to evaluate model fit, and 3) assess the water balance components of the
Pennar basin using SWAT. The Pennar River basin spans latitudes 13°18°-15°% 9" N
and longitudes 77°1°-80°10" E, covering approximately 53,91 9 km?, with elevations
ranging from 1 to 1,429 meters above mean sea level. Results demonstrated that
SWAT effectively simulated hydrologic runoff with good statistical performance (R?
= 0.89-0.90, NSE = 0.72-0.88, RSR = 0.35-0.52, PBIAS = -31.3% to -1.3%). The
model indicated that surface runoff constitutes only 14 % of the total precipitation,
highlighting the basin’s low runoff potential and the urgent need for water
conservation. These findings suggest that SWAT is a useful tool for further
applications, such as assessing climate change impacts and implementing best
management practices (BMPs) to address future water scarcity.

Key words: Hydrological modelling, SWAT model, Pennar basin, Water balance,
Calibration and Validation

1.0. Introduction

Understanding the hydrological processes of a
river basin is crucial for several reasons. It enables
effective water resource management by understanding
the water cycle, essential for planning and allocating
water for various uses while preventing over-extraction
(Adhikary et al., 2019). This knowledge is key to
predicting and mitigating natural disasters such as floods
and droughts, allowing for the development of early
warning systems as protective measures. It also supports
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ecosystem health by maintaining aquatic habitats and
biodiversity. For agriculture, understanding hydrology
optimizes irrigation practices, enhancing crop yields and
conserving water. In urban planning, it aids in designing
effective drainage systems to reduce flooding risks. As
climate change alters precipitation patterns,
understanding hydrology is vital for developing adaptive
strategies (Mandal ez al., 2021). Additionally, it helps
control pollution by identifying sources and transport
mechanisms. Finally, informed policy-making relies on
scientific hydrological knowledge to create effective
water management strategies (Das et al., 2022). Overall,
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understanding these processes is foundational for
sustainable resource management, disaster mitigation,
ecosystem protection, and adaptive planning. Thus,
accurate quantification of basin runoff is essential for
effective planning and protection of water resources. In
this context, hydrological models like the Soil and Water
Assessment Tools (SWAT) play a significantrole.

SWAT is a continuous-time, physically based,
spatially distributed model used to simulate water flow,
sediment, and agricultural chemical yields at the river
basin or watershed scale. It directly models physical
processes associated with water flow, sediment
transport, crop growth, and nutrient cycling (Shi et al.,
2011). SWAT has gained popularity globally for its
application across watersheds and river basins of
varying sizes, showing promising results in simulating
land use change effects, best management practices, and
more recently, assessing the impact of climate change on
hydrological responses (Adhikary et al., 2019; Mandal
et al., 2021).To enhance its capability for realistic
watershed simulation, SWAT employs the SWAT-CUP
calibration module, which includes calibration,
validation, and sensitivity analyses using multi-site
observation data (Abbaspour et al., 2004 ; Abbaspour et
al.,2007; Schuol and Abbaspour, 2006; Faramarzi et al.,
2013; Narsimlu et al., 2013). This module has further
expanded the application of SWAT worldwide. Studies
utilizing SWAT, such as Gosain et al. (2011), have used
coarse-resolution datasets to simulate hydrology and
assess the impact of climate change on the hydro-
climatology of major river basins in India. These studies
have identified hot spots requiring immediate attention
to mitigate extreme flood and drought situations arising
from climate change. However, detailed analysis of the
impact of climate change on hydrological behaviour in
critical river basins, such as the Pennar basin in southern
India, has been limited.

The Pennar basin, predominantly located in a
semi-arid region, spans largely through the states of
Karnataka and Andhra Pradesh. It is divided into two
main sub-basins: the Pennar Upper sub-basin, which
makes up 66.85% of the total area, and the Pennar lower
sub-basin, accounting for 33.15%. The basin
experiences a significant variation in annual rainfall,
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ranging from approximately 400 mm in the
Anantapuramu area to about 1200 mm near Sri Potti
Sriramulu, Nellore. Geographically, the Pennar basin
falls into two distinct Agro-Climatic Zones: the Southern
Plateau and Hills Region, and the East Coast Plains and
Hills Region. In terms of land use and land classification
(LULC), agricultural land is the most extensive, covering
58.64% of the basin, highlighting the importance of
agriculture in this region. Forests cover 20.37% of the
basin, while water bodies make up 4.97%. The basin's
soils are diverse, including red soil, black soil, sandy soil,
and mixed soil. Elevation within the basin varies, with
26.70% of the area lying between 500-750 meters above
sea level. The Pennar basin also features numerous
surface water bodies, such as lakes, ponds, reservoirs,
and tanks. Notably, tanks are the predominant type of
water body, constituting about 93.04 % of the total water
bodies in the basin.

Although recent studies, such as that by
Adhikary et al. (2019), have conducted hydrological
studies in the Pennar basin using SWAT, their focus has
been primarily on calibration and validation of stream
flow under different calibration approaches. Thus, there
remains a gap in the detail understanding the
hydrological behaviour of the Pennar basin, which
warrants further investigation. Keeping these things in
mind the objectives of this study are (1) to calibrate and
validate the stream flow of the Pennar basin and its five
main sub-basins using a distributed approach with the
SWAT model, (2) to analyze the sensitivity of various
hydrologic parameters in simulating the basin’s stream
flow, and (3) to assess the water balance components of
the Pennar basin through the SWAT model.

2.0. Materials and Methods
2.1.Study area

The Pennar River basin, located in southern
India between latitudes 13°18"-15°% 9" N and longitudes
77°1°-80°10" E, covers an area of 53,949 km?2
Originating in Karnataka's Chikkaballapur district, the
Pennar River flows northward and eastward through
Karnataka and undivided Andhra Pradesh before
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reaching the Bay of Bengal (Fig. 1). The basin, shaped
like a fan, lies in the rain shadow of the Eastern Ghats,
receiving an annual average rainfall of 813.3 mm and
experiencing an average temperature of 21.2°C. Its
elevation ranges from 1 to 14 29 meters above sea level,
indicating diverse topography. Rainfall is mostly
concentrated from June to October, leading to seasonal
stream flows.

Soils in the basin are mainly coarse-textured,
including sandy and mixed types, with red and black
soils prevalent. Agriculture dominates land use,
occupying 59% of the basin, with 73% of this land
dedicated to winter crops. Paddy is primarily grown in
the irrigated coastal areas of Sri Potti Sriramulu
(Nellore) and YSR (Cuddapah) districts, while jowar
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(sorghum) and oilseeds are common in the semi-arid
regions. Significant deforestation has reduced forest
cover to 20%, mostly consisting of tropical dry forests.
The basin spans 10 districts in Karnataka and Andhra
Pradesh, including approximately 146 drought-prone
blocks as identified by the 2002 Drought Prone Area
Programme (DPAP).

Effective management of water resources, soil
and water conservation, adaptive agricultural practices,
improved irrigation infrastructure, and reforestation are
crucial to address the challenges of seasonal rainfall,
variable stream flow, coarse soils, deforestation, and
drought in the Pennar River basin. Understanding these
factors is vital for sustainable development, resource
management, and climate change adaptation in the
region.
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Fig. 1. Map showing the location of the Pennar basin in India and its drainage network
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2.2. SWAT model

ArcSWAT, the ArcGIS 10.1 interface of SWAT
2012.10.1.18, was used to simulate runoff in the Pennar
basin. SWAT (Soil and Water Assessment Tool) is a
continuous, physically-based, semi-distributed
hydrologic model designed to assess the effects of land
use, management practices, and climate on water,
sediment, and agricultural chemical yields in ungauged
watersheds. It integrates major components like
hydrology, weather, soil, and land use to simulate the
hydrologic cycle, including evapotranspiration,
infiltration, percolation, surface runoff, lateral flow,
return flow, and groundwater recharge (Neitsch et al.,
2011).

The Pennar basin's diverse area is divided into
sub-basins and further into Hydrologic Response Units
(HRUs) with unique soil, land use, and slope
combinations. SWAT employs the Curve Number (CN)
method for runoff estimation (USDA-SCS, 1972) and
the Penman-Monteith method for evapotranspiration
1956; Monteith, 1965).
Groundwater return flow is calculated using a

calculation (Penman,

groundwater balance equation, accounting for
contributions from shallow and deep aquifers. Rainfall-
induced erosion is estimated using the Modified
Universal Soil Loss Equation (Williams, 1975).

Hydrologic simulation in SWAT involves two
phases: the land phase, which manages water movement
on land using the water balance equation, and the routing
phase, which routes water through the channel network
using the Muskingum method. This approach allows for
a comprehensive analysis of the hydrologic processes
within the Pennar basin, enabling effective management
and planning of water resources.
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2.3. SWAT-CUP

The SWAT model was evaluated using SWAT-
CUP 2012.5.1.3 (SWAT Calibration and Uncertainty
Program), incorporating algorithms like Sequential
Uncertainty Fitting (SUFI-2) (Abbaspour et al., 2007).
SUFI-2 addresses uncertainties in deriving variables,
model conceptualization, parameterization, and
measured data, quantified as a 95% prediction
uncertainty (95PPU) band at the 2.5% and 97.5% levels
of'the cumulative output distribution. A 'Latin hypercube’
sampling technique (McKay et al., 1979) was used to
draw independent parameter sets.

Calibration and uncertainty analysis are
assessed using the p-factor and r-factor. The p-factor
indicates the percentage of measured data within the
95PPU, while the r-factor is the average thickness of the
95PPU band relative to the standard deviation of
measured data. Ideally, a p-factor of 1 (100%) and an -
factor near zero signify perfect agreement between
simulated and observed values (Abbaspour et al., 2007;
Abbaspour, 2011). Model performance was further
evaluated using the coefficient of determination (R?),
Nash-Sutcliffe efficiency (NSE), Root Mean Square
Error to Standard Deviation Ratio (RSR), and
Percentage of Bias (PBIAS) (Moriasi etal., 2007).

2.4.Model Input
2.4.1. Elevation

The ASTER DEM with a 30-meter resolution
from the Global Land Cover Facility (GLCF)
(http://www.landcover.org/) was used to calculate sub-
basin parameters like slope and stream network (Fig. 2).
The ArcSWAT interface delineated a stream network
closely matching observed data from remote sensing.
The DEM was projected to UTM zone 44 before
modeling.
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Fig. 2. Map showing the digital elevation model (DEM) and the gauging stations in the Pennar basin

2.4.2.Land use

Aland use grid for the Pennar basin was created
using AWiFs imagery from the IRS-P6 satellite,
classified with ERDAS IMAGINE 9.0 and ground truth
data (Fig. 3). The primary land uses are agricultural land

(82.9%), forested areas (13.8%), and wetlands/fallow
lands (2.8%) followed by other land uses of 0.5%.
During the kharif season, rice, groundnut, jowar, and
finger millet are grown, while rabi season cultivation
dominates with mustard, chili, and sunflower.
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Fig. 3. Map showing the present land use followed in the Pennar basin

2.4.3.Soil Soil hydraulic data were estimated using pedotransfer
functions for Indian soils (Adhikary et al., 2008) due to

The soil series map of undivided Andhra  data unavailability in the report. The map indicates that
Pl‘adesh at a 1250,000 Scale by NBSS&LUP (2005) 69% Ofthebasin's Soil is heavy_textured.

provided the soil database for the Pennar basin (Fig. 4 ).
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Fig. 4. Map showing the spatial distribution of predominant soil textures in the Pennar basin

2.4 .4 . Weather

The SWAT model requires daily weather data
inputs, which can be observed or simulated. This study
obtained 37 years (1969-2005) of observed data for
rainfall, temperature, humidity, and wind speed from the
India Meteorological Department (IMD). Solar
radiation, not available from IMD, was calculated using
temperature data (Hargreaves and Samani, 1985).
Observed data were used for simulation, with the

weather generator filling missing values, when
necessary, by using the maximum likelihood-based
expectation maximization method.

2.5.Model Setup

The ASTER DEM was utilized for watershed
delineation and for creating stream networks and outlets.
The SWAT generated the Hydrological Response Units
(HRUs) by integrating pre-prepared land use and soil
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maps by reclassifying and overlaying soil, land use, and
slope classes accurately. Given the watershed's size,
thresholds of 5% for land use, 10% for soil, and 10% for
slope were set to form HRUs, resulting in 73 sub-
watersheds and 1,10 HRUs. Smaller sub-basins
increase drainage network detail, while larger ones
reduce it. Bingner et al. (1997) noted that SWAT's
erosion model runoff volume is not significantly
affected by sub-watershed size.

Climate data inputs included precipitation,
minimum and maximum temperature, wind speed, solar
radiation, and relative humidity, formatted and
imported into SWAT. The model was run over 14 years
(1992-2005), including a three-year warm-up, with
results produced monthly.

2.6. Model Calibration and Validation

Calibration, validation, and sensitivity analysis
of the SWAT model were conducted using SWAT-CUP.
Observed outflow data from 1995 to 2000 with a warm-
up period of three years, were provided for model
calibration at six gauging stations. To achieve proper
calibration, 15 sets of parameters were individually
applied to each gauging station, using the utility
program option in SWAT-CUP called "upstream sub-
basins" to separate upstream sub-basins and assign
different parameter ranges to different sub-basins. This
method involved using 90 parameters to calibrate the
entire Pennar basin, encompassing the six gauging
stations. By subcategorizing 15 sets of parameters into
90 sets, the calibration was fine-tuned to account for the
diverse ecological regions within the watershed,
improving the sensitivity analysis and overall

calibration accuracy.

The effectiveness of the calibration was
evaluated using several statistical metrics: the Nash-
Sutcliffe coefficient of efficiency (NSE), the coefficient
of determination (R?), the ratio of the root mean square
error to the standard deviation of the measured data
(RSR), and the percentage bias (PBIAS). These metrics
are described below:

NSE measures how well the predicted values
match the observed data, with values closer to 1
indicating better performance.
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Where,

nis the number of measured data

0O,and P,are measured and predicted data at time i

O is the mean of the measured data.

R?indicates the proportion of the variance in the observed
data explained by the model, with values closer to 1
signifying a better fit.
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Where,

nisthe number of measured data

O,and P,are measured and predicted data at time i

O and P are mean of the measured data and predicted data
RSR combines error index statistics and the standard
deviation of the observations, with lower values

indicating better model performance.
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Where, n is the number of measured data

O,and Pare the measured and predicted data at time i

O'is the mean of measured data

PBIAS measures the average tendency of the simulated
values to be larger or smaller than their observed
counterparts, with values closer to 0 indicating more
accurate model predictions.
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Where, nisthe number of measured data
O, and P,are the measured and predicted data at time 7.

2.7. Sensitivity Analysis

In the present study, sensitivity analysis was
conducted using the Latin Hypercube Sampling and
One-At-a-Time (LHS-OAT) method. This technique
allows us to observe the impact of individual parameters
on the model output by measuring the rate of change in
response to variations in input parameters. For the
calibration of runoff estimation, a total of 90 parameters
were utilized, with 15 sets assigned to each of the six
gauging stations. These parameters were varied within
their absolute ranges. Some parameters, such as curve
number, available water content, bulk density, hydraulic
conductivity, and average slope length, were adjusted
using relative methods, while others were replaced or set
using absolute methods. A wide range of parameters
were provided to the model for calibration due to the
limited understanding of parameter behaviour within
the watershed.

During the calibration process, parameters were
adjusted in a trial-and-error manner based on
observations from global analysis graphs, dotty plots,
and the 95% prediction uncertainty (PPU) graph to
achieve a good fit between simulated and observed
streamflow. The goal was to obtain simulated
streamflow output that closely matched observed
data.To predict uncertainty, the p-factor (percent of
observations bracketed by the uncertainty band) and r-
factor (achievement of a small uncertainty band) were
calculated. A p-factor close to 1 and a small r-factor
indicate better results in predicting uncertainty (Luo et
al.,2011).
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3.0. Result and Discussion

3.1. Flow calibration and validation using SUFI-2
algorithm

The calibration phase of hydrological models
like SWAT involves adjusting model parameters to
minimize the difference between simulated and observed
hydrological behaviour. In this case, after 500
simulations, Table 1 displays the optimized values of 15
parameters, revealing a narrower range compared to the
default SWAT recommendations. This narrowing
suggests reduced parameter uncertainty and indicates a
stable model capable of accurately representing
hydrological processes within the Pennar basin. The fact
that uncertainties are categorized as epistemic implies
that they arise from a lack of knowledge rather than
inherent variability in the system. Notably, the
uncertainty in predictions, as indicated by the 95 percent
prediction uncertainty (PPU) band, suggests greater
uncertainty for higher discharge rates, which is crucial for
understanding potential model limitations and informing
decision-making processes. The optimized parameter
values, coupled with the narrowed parameter range,
indicate the model’s capability to simulate hydrological
behaviour under different conditions, including potential
impacts of climate change. Previous studies (Gosain et
al., 2006; Narsimlu et al., 2015; Mandal et al., 2021)
support the suitability of the SWAT model for predicting
hydrological behaviour in various river basins under
different climate change scenarios, further validating the
findings and conclusions drawn from this study. Overall,
the narrowed parameter range and optimized parameter
values enhance confidence in the model’s predictive
capabilities, providing valuable insights for water
resource management and climate change adaptation
strategies in the Pennar basin.
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Table 1: Input parameters for calibrating and validating the SWAT model

Parameter Name Description Initial parameter Final parameter Fitted value
distribution distribution
Min Max Min Max Upper Lower
value value value value Pennar Pennar
R CN2.mgt SCS Curve number for | -0.2 0.2 -0.2 0.2 0.002 -0.02
soil moisture condition
11
V__ESCO.hru Soil evaporation 0 1 0 1 0.23 0.35
compensation factor
V__ GW_DELAY. | Groundwater delay 1 30 1 30 11 14
aw time
R SOL AWC(..) | Available water -0.2 0.2 -0.2 0.2 0.14 0.18
.sol capacity of the soil
layer
V__RCHRG DP.g | Deep aquifer 0 1 0 0.5 0.33 0..23
w percolation fraction
V__ GW_REVAP. | Groundwater 0.02 0.25 0.02 0.25 0.18 0.08
aw revaporation
coefficient
R SOL K(..).sol | Saturated hydraulic -0.2 0.2 -0.15 0.15 -0.13 0.02
conductivity
V__GWQMN.gw | Threshold water depth | 0 6000 1000 6000 2135 3475
in shallow aquifer for
return flow to occur
R SOL BD(..).s | Soil bulk density -0.2 0.2 -0.2 0.18 -0.18 -0.16
ol
V__ALPHA BN | Bank flow recession 0 1 0 1 0.98 0.33
Krte constant or constant of
proportionality
A ALPHA BF.g | Alpha base flow factor | 0 1 0 1 0.89 0..74
w
R SLSUBBSN.h | Average slope length -0.2 0.2 -0.2 0.1 -0.04 0.07
ru (m)
V__EPCO.hru Plant uptake 0 1 0 1 0.53 0.75
compensation factor
V__REVAPMN.g | Threshold depth of 0 500 0 400 51 186
w water in the shallow
aquifer for “revap” to
occur (mm)
V_OV_N.hru Manning’s “n” value 0.01 30 0.01 20 2.5 12
for overland flow

Calibration and validation, using the temporal split
sample approach, occurred from 1995 to 2000 and 2001
to 2005, respectively, in the Pennar basin. Performance
metrics included NSE, R2, RSR, and PBIAS. The Pennar
basin underwent calibration and validation through
spatially distributed outlet. Distributed parameter
calibration from 1995 to 2000 and validation from 2001
to 2005 at six gauging stations improved results,

especially for four main tributaries and upper and lower
Pennar. Calibration results are summarized in Table 2. As
the four main tributaries in the Pennar benefited from the
distributed approach, reflecting the true conditions of
each sub-basin with varied parameter values, thus
enhancing model performance. Fig. 5 displays observed
and simulated monthly stream flow patterns alongside
their upper and lower PPU ranges during calibration and
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validation. During the six-year calibration period,
observed and simulated discharges aligned well across

sub-basins. Although some sub-basins, including lower
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Pennar, exhibited higher bias due to the basin’s dryness,
overall performance remained satisfactory.

Table 2: Performance statistics of the SWAT model for simulating monthly stream flows using SUFI-2 during

calibration and validation periods in the Pennar basin

Parameters Upper Pennar Lower Pennar
Calibration Validation Calibration Validation
R? 0.88 0.90 0.51 0.88
NSE 0.72 0.88 0.52 0.67
RSR 0.52 0.35 0.68 0.27
PBIAS (%) 313 -1.3 -17.5 -6.2
p-factor 0.73 0.69 0.57 0.46
r-factor 0.79 0.53 0.55 0.74
1400 | :
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% A
; 000 4 Observed 1 3
= =—Simulated ! N
= 800 I
g 95% PPU band :
S 600 | |
= 1
= 400 - I
~ I
= 200 - I
D r
5‘3
900 -
! (b)
-—,_’: 800 Calibration period (1995-2000) \L Validation period (2001-2005)
T% 700 + ; - -
2 600 gooo-Observed LRt K L
% s00 1 ——Simulated :
= 3 |
£ 400 h ﬂ 95% PPU band ! 5 £
% ! i1
2 I £
= | :
S I
= B |

Fig. 5.

Observed and simulated daily stream flow hydrographs by SUFI-2 for calibration and validation

periods in the (a) Upper Pennar and (b) Lower Pennar sub-basins of the Pennar River
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The validation performance of Kunderu,
Sagileru, Chitravati, Papagni tributaries, upper Pennar,
and lower Pennar displayed high values of R%, NSE, and
low PBIAS, indicating their significant contribution to
the basin’s runoff. Kunderu River notably contributed
sufficient runoff, with satisfactory performance in both
calibration and validation, albeit, slight discrepancies in
some months. Overall, the simulation for stream flow in
the upper Pennar basin was deemed satisfactory.

The Sagileru tributary demonstrated consistent
and satisfactory performance in both calibration and
validation phases, with R? values of 0.7 and NSE values
around 0.6. Despite its low runoff, Sagileru maintained
stable flow patterns throughout seasons, with occasional
discrepancies, notably in 1996. Similarly, the Chitravati
and Papagni rivers, contributing to the southern Pennar
basin, exhibited comparable patterns, with calibration
generally outperforming validation. Chitravati
displayed an impressive calibration R? of 0.9. but
declined during validation. Papagni showed similar
trends, indicating sensitivity to model parameters and
observational uncertainty. The p-factor, reflecting the
percentage of observations within the 95PPU, varied
across tributaries, with improved results during
validation, suggesting model refinement over time.
Despite challenges in semi-arid regions, the basin's
tributaries and main river basin demonstrated
satisfactory performance. Discrepancies between
calibration and validation underscored the need for
enhanced data quality and consideration of external
factors in future modeling endeavours, particularly in
addressing uncertainties arising from anthropogenic
water usage and runoff observation errors.
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In both upper and lower Pennar, validation
outperformed calibration. Upper Pennar displayed an R?
of 0.90 in validation, indicating a near-unbiased result,
contrasting with its biased calibration phase (Fig. 5).
The model was occasionally overpredicted, possibly due
to input errors or hydrological variations. Lower
Pennar's SUFI-2 algorithm showed lower capture rates
during calibration, resulting in decreased statistical
parameters. While R? and RSR suggest good model
performance, NSE and PBIAS reveal discrepancies
between observed and simulated runoff. Uncertainties
arise from factors like climatic data errors, downstream
activities, or soil properties. Despite challenges, the
overall basin performance, including its tributaries,
remains satisfactory. Improved data quality and
accounting for external factors are crucial for accurately
simulating large basins using SWAT.

3.2. Sensitivity of model parameters

Before model calibration, sensitivity analysis is
crucial to identify significant parameters, reducing their
number for manageable handling in the SWAT model.
The SUFI-2 optimization technique’s outcomes, include
best-fit estimations and parameter uncertainty ranges,
denoted by "v" for replacement, "r" for percentage
change, and "a" for addition. Sensitivity analysis in
SWAT-CUP, using SUFI-2 optimization, employs t-stat
for sensitivity measurement and p-value for significance
determination. Table 3 summarizes values for t-stat and
p-value within the Pennar basin. High absolute t-stat
values indicate greater sensitivity, while values close to
zero in p-value indicate significance (Abbaspour2011).
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Table 3: Sensitivity analysis of SUFI-2 model parameters for monthly stream flow simulation in the Pennar basin

Parameter Name Calibration Validation
t-Stat p-Value t-Stat p-Value

R CN2.mgt 2.07 0.009 -1.83 0.068
V__ESCO.hru 0.32 0.748 0.40 0.686
V__GW_DELAY.gw 1.04 0.301 -1.42 0.155
R _SOL_AWC((..).sol 1.57 0.116 1.50 0.133
V__RCHRG DPgw 1.1a 0.255 -3.16 0.002
V__GW_REVAP.gw 0.98 0.330 0.37 0.709
R__SOL K(..).sol -1.49 0.137 1.33 0.185
V__GWQMN.gw 0.45 0.656 -0.59 0.555
R_SOL BD(..).sol -1.00 0.317 -0.13 0.893
V__ ALPHA BNK.rte -0.68 0.497 -0.01 0.989
A ALPHA BF.gw 1.79 0.074 1.18 0.238
R __SLSUBBSN.hru -0.48 0.629 0.24 0.813
V__EPCO.hru 1.13 0.261 -1.02 0.306
V__REVAPMN.gw -0.71 0.476 1.27 0.205
V__ OV _N.hru -1.49 0.136 1.33 0.185

Sensitivity analysis, conducted using the latin
hypercube one-factor-at-a-time (LH-OAT) technique
(Van Griensyen et al., 2006) in SUFI-2, highlighted
parameters like GW_DELAY, GW_REVAP, GWQMN,
RCHRG DP, REVAPMN, ALPHA BF, SOL AWC,
SOL_K, SOL BD, ESCO, EPCO.hru, OV_N,
SLSUBBSN, CN2, and ALPHA BNK as sensitive. In
the Kunderu sub-basin, parameters such as CN2, ESCO,
GW_DELAY, SOL_AWC, RCHRG_DP, GW_REVAP,
SOL_K, GWQMN, and SOL_BD are highly sensitive,
indicating their crucial role in regulating stream flow.
These parameters, linked to soil and groundwater
dynamics, heavily influence the sub-basins hydrology.
For instance, the relatively low GW_REVAP value
suggests efficient capillary water movement to the root
zone, while RCHRG_DP’s low value indicates limited
deep aquifer recharge. Overall, soil characteristics and
aquifer properties significantly impact runoff generation
in the Kunderu sub-basin. In the adjacent Tungabhadra
River basin, Singh et al. (2013) identified ten highly
sensitive hydrological parameters, and eight of these
were also found to be sensitive in the current study.

Sensitivity analysis of the Sagileru sub-basin,
contrasting with the Kunderu sub-basin, reveals
significant parameter differences due to geological,
geomorphic, soil, and climatic variations. Key

parameters include CN2, GW_REVAP, ESCO, SOL K,
SOL BD, ALPHA BF, RCHRG DP, REVAPMN,
GW_DELAY, and OV_N, with groundwater parameters
notably sensitive. Despite being in the rain shadow of the
Eastern Ghats, high evapotranspiration occurs. A high
GW_REVAP value (0.24) indicates a shallow aquifer,
leading to rapid water flow due to the area’s sloping
terrain. The Chitravati sub-basin exhibits sensitivity
patterns akin to the Kunderu sub-basin. Key sensitive
parameters include RCHRG _DP, CN2, ESCO,
GWQMN, GW_REVAP, SLSUBBSN, SOL AWC,
SOL BD, SOL K, GW_DELAY, with average slope
length also influential. High evapotranspiration is
observed, reflected in a notable GW_REVAP value
(0.25), suggesting a shallow aquifer presence and
capillary rise, with predominant sheet flow and overland
runoff.

In the Papagni sub-basin of the Pennar basin, all
hydrological parameters are highly sensitive, making it
the most sensitive sub-basin. Key parameters include
HRU, soil, and groundwater factors like GWQMN,
RCHRG_DP, CN2, EPCO, ESCO, SOL BD,
GW_DELAY, GW_REVAP, ALPHA BF, OV_N,
SOL AWC and REVAPMN. Notably, EPCO, dependent
on soil water availability, is crucial, with a sensitivity of
0.29 indicating minimal deviation from the original
distribution.
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In the lower Pennar basin, ALPHA BF,
SOL_AWC,OV_N,RCHRG DP,EPCO,and SOL_BD
are sensitive parameters. Conversely, in the upper
Pennar basin, GW_REVAP, REVAPMN, and
ALPHA BNK show sensitivity. The movement of
water from the shallow aquifer into the unsaturated zone
appears significant in the upper Pennar, indicated by
GW_REVAP’s value of 0.18. However, the lower
Pennar’s ample rainfall reduces the need for direct
aquifer water uptake, lessening GW_REVAP and
REVAPMN's significance. Overall, differences in
hydrological processes due to varying rainfall patterns
influence parameter sensitivity between the upper and

lower Pennar basins.
The sensitivity analysis reveals that the soil

evaporation compensation factor (ESCO) is crucial for
all tributaries except the lower Pennar. In Tungabhadra
River basin also, ESCO was a crucial sensitive
parameter (Singh et al., 2013). Low coefficients in
Kunderu, Sagileru, Chitravati, and Upper Pennar
suggest adequate moisture extraction from lower soil
layers, contrasting with high coefficients in Papagni and
lower Pennar, indicating insufficient moisture for plant
uptake (Adhikary et al., 2019). Soil parameters like
SOL_AWC and SOL _BD are universally sensitive.
Curve number, key for runoff, varies across HRUs due
to soil permeability and land use, influencing runoff
potential. With only 14.9% stream flow from total
precipitation (Table 4 ), the basin’s low runoff potential
aligns with its predominantly medium-textured soil.

3.3. Water balance in Pennar basin
The simulated water balance components for

the Pennar basin, as derived from the SWAT model,
provide valuable insights into its hydrological
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conditions (Table 4 ). With a precipitation input of 813.3
mm, the basin receives a substantial amount of rainfall,
which drives various hydrological processes. Surface
runoff, totalling 121.83 mm, signifies the portion of
rainfall that directly flows over the land surface,
indicating potential risks of soil erosion and surface
water runoff. Lateral flow, at 10.52 mm, demonstrates
limited horizontal movement of water within the soil
profile (Adhikary et al.,, 2019). Groundwater flow,
accounting for 20.27 mm, suggests modest recharge of
groundwater resources within the basin. The total water
yield, calculated at 215.49 mm, signifies the combined
availability of surface water and groundwater.
Evapotranspiration is notably high at 538.5 mm,
indicating significant water loss to the atmosphere, likely
driven by warm temperatures and vegetation activity.
Percolation out of the soil, with a value of 132.98 mm,
indicates substantial water infiltration into the soil
profile, which is essential for groundwater recharge and
sustaining soil moisture levels. Deep aquifer recharge,
totalling 21.88 mm, suggests a moderate replenishment
of deep aquifers with water, indicating potential
limitations in groundwater replenishment processes
within the basin. Variations in topography and soil
physical properties significantly influence the
hydrological process (Shivakoti et al., 2008). Different
land uses affect the water balance by controlling
transpiration, interception storage, throughfall, plant
water uptake, and infiltration capacity (Breuer et al.,
2009). Overall, the analysis of these hydrological fluxes
provides valuable insights into the water balance
dynamics of the Pennar basin, essential for informed
water resource management and conservation efforts in
the region.

Table 4: Simulated water balance components (mm) for the Pennar basin using the SWAT model

Hydrological fluxes Amount (mm)
Precipitation 813.3
Surface Runoff 121.83
Lateral flow 10.52
Groundwater flow 20.27
Total water yield 21549
Evapotranspiration 538.5
Percolation out of soil 132.98
Deep Aquifer recharge 21.88
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4.0. Conclusion

The assessment of hydrological processes and
water balance in the Pennar River basin using the SWAT
model has provided valuable insights into the basin’s
hydrological dynamics. The model's ability to simulate
runoff with high accuracy, as reflected in strong
statistical performance, underscores its reliability as a
tool for hydrological analysis in complex river basins.
The sensitivity and uncertainty analyses further
validated the robustness of the model, highlighting
critical parameters influencing runoff generation.The
findings reveal that surface runoff accounts for only
14 % of total precipitation, emphasizing the basin’s low
runoff potential and the need for focused water
conservation efforts. The results indicate that
unsustainable human activities and the effects of climate
change are likely to exacerbate water scarcity issues in
the region. This calls for the implementation of effective
water management strategies, including the adoption of
best management practices (BMPs) to mitigate water
stress and ensure sustainable water use.The SWAT
model’s effectiveness in capturing the key components
of the water balance makes it a valuable tool for future
studies on the impacts of climate change and land-use
dynamics on water resources. These findings can guide
decision-makers in developing long-term conservation
strategies to preserve the basin’s water yield, supporting
both ecological health and human needs in the face of
growing environmental challenges.
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