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Abstract :  In this study, groundwater quality in the Jakham River Basin, located in 
southern Rajasthan, India, was characterised using a multivariate statistical approach 
and a geographic information system (GIS). A total of 76 groundwater samples were 
collected from different sites in the area. Two multivariate statistical approaches, i.e., 
principal component analysis (PCA) and hierarchical cluster analysis (HCA), were 
applied to pre-monsoon and post-monsoon groundwater quality data to identify the 
most critical factors controlling groundwater quality. Spatial maps of groundwater 
quality parameters were developed using GIS. During the pre-monsoon and post-
monsoon seasons, the computed values of the Water Quality Index (WQI) ranged 
from 28.28 to 116.74 and from 29.49 to 111.98, respectively. Based on values of GIS-
based WQI, 63.42 and 42.02% of the groundwater samples were classified as 'good' 
during pre-monsoon and post-monsoon seasons, respectively. The interpretation of 
PCA results revealed the impact of geological and human interventions on increased 
levels of electrical conductivity, total dissolved solids, sodium, chloride, bicarbonate, 
fluoride, and sulphate. In this study, Ward's method was used for clustering of 
samples in HCA. The findings of the HCA indicated that there were four distinct 
groundwater quality groups within the basin. The findings of this study provide a 
reference database for the groundwater quality, facilitating further development and 
management of groundwater resources in the study area. Moreover, PCA and HCA 
were recommended as suitable tools for simplification of the evaluation process in 
groundwater quality analysis.

Keywords: Geographic information system; Jakham river basin; Principal component 
                   analysis; Hierarchical cluster Analysis; Water quality index.

Introduction

 One of the most pressing problems in today's 

world is ensuring an adequate supply of good-quality 

water. This leads to sustainable management of water 

resources at stakeholder end (Das et al., 2019), and to 

achieve this cutting-edge concept, a dedicated approach 

is required. In India, the majority of the population relies 

on rivers and lakes for fulfilling their water 

requirements; however, the management of sewage and 
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discharged water is very poor. As a result, the available 

water is prone to contamination, which has a negative 

impact on human health. Therefore, it is necessary to 

monitor available water resources (Noshadi & 

Ghafourian, 2016). According to a United Nations report, 

22% of human deaths are directly linked to waterborne 

diseases (Sharma et al., 2021). This emphasises the need 

to characterise the groundwater quality.
 Characterisation of groundwater quality (GWQ) 

refers to the physico-chemical and statistical analysis of 

groundwater, based on different standardised approaches 



(Gautam et al., 2022a). GWQ is a significant aspect for 

the sustainable growth of water resources, as many 

sectors, such as irrigation, drinking, and industrial, rely 

on it (Ravikumar et al., 2011; Mohamed & Elmahdy, 

2015). As all geological formations impact groundwater 

quality in the aquifer system, the quality of groundwater 

is  dependent on the combination of various 

hydrogeological activities (Lee & Song, 2007; Batayneh 

& Al-Taani, 2016; Abdelaziz et al., 2020). The 

assessment of GWQ is a challenging task that involves 

handling a large number of variables, each of which has 

the potential to exert a specific impact on the overall 

GWQ (Bodrud-Doza et al., 2016). Additionally, GWQ 

exhibits spatio-temporal variability that is commonly 

influenced by topography, industrial effluents, open 

sewage dumping, and agricultural waste (Zavareh & 

Maggioni, 2018; Barkat et al., 2022; Mohseni et al., 

2022). In southern Rajasthan of India, GWQ is rarely 

characterised using multiple and integrated approaches 

(Machiwal et al., 2011; Gautam et al., 2022a). The GWQ 

indexing is a new approach for determining the 

potability of water for human consumption, with an 

index varying on a 0-100 scale that represents the 

suitability of groundwater both in space and time (e.g., 

Gautam et al., 2023). The spatial maps of groundwater 

quality can also be generated through the integrated 

application of geographic information systems (GIS) 

and spatial interpolation methods such as inverse 

distance weighting (IDW), as an efficient tool for 

interpreting the spatial variation of GWQ (Tirkey et al., 

2017; Gauns et al., 2020). The water quality index 

(WQI) is nowadays employed as a customary approach 

for evaluating the GWQ (Khan & Jhariya, 2017; Kawo 

& Karuppannan, 2018). The WQI has been employed to 

assess the spatial and temporal variability of aquifers' 

water quality in many states of India, including 

Rajasthan, Karnataka, and Delhi, among others, as it 

provides a single value and is easy to comprehend 

(Mohamed & Elmahdy, 2015; Shil et al., 2019).
 The correlation matrix establishes relationships 

among the various GWQ parameters under the influence 

of geological and chemical processes (Das et al., 2019). 

It helps to detect the key influencing groups of water 

quality parameters and their sources of origin. Bodrud-

Doza et al. (2016) monitored and analysed the GWQ of 60 

open wells in Faridpur district of central Bangladesh. The 

outcomes of the correlation matrix were consistent with 

the results of other statistical analyses (e.g., Roy et al., 

2021). The spatio-temporal distributions of GWQ 

parameters were also estimated using geostatistical 

analysis (e.g., Ram et al., 2021). In literature, few 

statistical methods, such as the projection approach, have 

been utilised for evaluating the WQI (Iqbal et al., 2021). 

However, PCA has emerged as a vital tool to deal with 

multivariate datasets concerning different GWQ 

parameters (Shil et al., 2019; Mohseni et al., 2022). In 

general, principal component analysis (PCA) has the 

primary function of simplifying the processing of big data 

input variables by isolating the most important aspects of 

a massive dataset (Vishwakarma & Thakur, 2012). As a 

part of PCA, grouped variables, termed as principal 

components (PCs), may be transformed using factor 

analysis (FA) (Jankowska et al., 2017). Hence, in this 

study, the influential GWQ parameters of the local 

aquifer were assessed using PCA.
 Hierarchical cluster analysis (HCA) displays the 

clustering of different GWQ parameters by identifying 

their proximity with respect to particular features (Omo-

Irabor et al., 2008; Teixeira et al., 2021). It facilitates in 

physico-chemical understanding of GWQ chemistry. In 

this study, a dendrogram was generated using Ward's 

method, with squared Euclidean distance serving as the 

similarity metric. Teixeira et al. (2021) employed HCA to 

examine the homogeneity and characteristics of GWQ, 

resulting in a better understanding of the geological 

action on the aquifer system.
 The present study aimed at characterising 

groundwater quality in the Jakham River Basin by 

employing multivariate statistical techniques in a GIS 

environment. This study applies PCA and HCA 

(Loganathan & Ahamed, 2017; Mohseni et al., 2022) to 

examine the concentration of critically influencing GWQ 

parameters and the hazardous concentrations of fluoride, 

nitrate, and sulphate (Herojeet et al., 2016; Sharma et al., 

2021). As per reports of the Central Ground Water Board 

(CGWB, 2017), two blocks of the study area, namely 

Pratapgarh and Chhoti Sadri, have been characterised as a 

sub-critical stage, which is due to high fluctuations in 
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groundwater level and critical GWQ in pre-monsoon and 

post-monsoon seasons (Bouteraa et al., 2019; Gautam et 

al., 2022c). It is expected that the findings of this study 

will aid in ensuring GWQ and maintaining an 

environment that permits the sustainable use of 

groundwater resources in the study area.
 

Materials And Methods

Overview of Study Area

 Jakham River basin is located between the 

latitudes of 24.451°N - 23.988°N and the longitudes of 
274.501°E - 74.802°E, covering an area of 953 km  in the 

upper reaches of the Mahi River basin (Fig. 1). The 

south-west portion of the basin evidences forest and hilly 

area, while northeast-southeast portion is covered with 

urban and agricultural lands, which reflects the land use 

diversity within the basin (Gautam et al., 2021; Gautam 

et al., 2022a). The soil characteristics of the basin 

resemble those of black, fertile soil, and the climate of the 

basin varies from sub-humid to semi-arid, with a 

moderate average annual rainfall of 700 mm. 
 The geology of the basin is composed of various 

rock formations, which are predominantly igneous and 

meta-sedimentary in nature, and influence the dynamics 

of groundwater in the subsurface strata. Approximately 

45% of the southern portion of the study area consists of 

basaltic geologic formations, while the remaining 

portion features a diverse range of geological formations 

(Gautam et al., 2022b). However, these types of rock 

formations are not considered good aquifers. Moderate 

groundwater potential occurs within the contact zone of 

basalt and other lithological units. The basin also exhibits 

a moderate evaporation rate, i.e., approximately 11.20 

mm/day in the summer season. The major part of the 

basin is involved in the cultivation of opium and 

processing of its by-products, which leads to overuse of 

fertilisers and saline chemicals. Hence, the north-to-

central part of the basin has a groundwater salinity 

problem. In this basin, groundwater is only found in 

semi-confined to unconfined conditions. However, 

phreatic aquifers are the primary sources of water for 

both human consumption and agricultural activities. The 

locations of the groundwater sampling sites are shown in 

Figure 1.
 
Data Collection

 Groundwater samples were collected manually 

from a total of 76 sites in the basin during both the pre-

monsoon and post-monsoon seasons during 2019-2020 

using a well-established stratified sampling technique. 

The groundwater level in the study area varies from 15-

30 m below ground level (bgl) and 25-40 m bgl in pre-

monsoon and post-monsoon seasons, respectively. In 

addition, GWQ data for the last 13 years (2006-2018) 

were collected from the Ground Water Department 

(GWD), Jaipur and CGWB, Jaipur, for statistical 

analyses. High-quality, sealed polyethene bottles (250 

mL) were used for sample collection. Some GWQ 

parameters, such as electrical conductivity (EC), pH, 

total dissolved solids (TDS), temperature, fluoride (F), 

and residual chloride (Cl), were analysed on the spot 

usinga low-cost Rapid Water Quality Testing Kit 

(RaQKT). This low-cost RaQKT kit was developed for 

the on-site determination of drinking and irrigation water 

quality, which helps reduce the workload in laboratory 

work (Gautam et al., 2022c). The remaining parameters 

were analysed in the Groundwater Laboratory of the 

College of Technology and Engineering (CTAE), 

Udaipur, India. The regulations and recommendations 

described by Bureau of Indian Standards (BIS), New 

Delhi (BIS, 2012) were used to analyse the major cations, 

i.e., calcium (Ca), magnesium (Mg), sodium (Na), 

potassium (K) and anions, i.e., bi-carbonate (HCO ), 3

chloride (Cl), sulfate (SO ) and nitrate (NO ). We used 4 3

the Charge Balance Error (CBE) method to ensure the 

precision of our analysed samples (CBE) (Freeze & 

Cherry, 1979): 
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efficient analysis. PCA approaches datasets consisting of 

several correlated components by portraying them as 

smaller sets of independent, uncorrelated variables. It 

incorporates data in a correlation matrix and reorganises 

it in a system that can improve the interpretability of the 

underlying data structure. The process of PCA 

commences with the generation of a novel set of GWQ 

variables (called principal components or PCs) based on 

linear combinations of variables belonging to the original 

datasets. Generally, the entire PCA process can be 

divided into two steps, viz., standardisation of data and 

extraction of PCs. Initially, measured water quality data 

(X ) were standardised by Z-scale transformation using ji

the following formula (Kawo & Karuppannan, 2018):

                                                                          (3) 

value. It indicates the parameters whose index values 

express the complete water quality. This indexing is 

suitable for analysing the quality of drinking and 

irrigation water. The criteria for WQI mapping are 

presented in Table 1. Brown et al. (1972) formulated the 

weighted arithmetic indexing (WAI) method, which is 

often used for the computation of WQI. The following 

expression has been applied for the calculation of WQI: 

                                                                           (2)

 Most of the investigated samples had 

concentrations of CBE below 10%.
 The flowchart of the methodology, which 

illustrates the processes involved in characterising 

GWQ, is shown in the methodology section. This 

flowchart outlines the step-by-step process for spatial 

mapping of the WQI index and statistical analyses of 

GWQ parameters using PCA, HCA, and a correlation 

matrix.

Calculation of Water Quality Index

 The WQI is a common approach to express 

significant quantities of GWQ data as a single numerical 
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Multi-variate Statistical Techniques for Interpretation 

of Groundwater Quality

In this study, box and whisker plots of GWQ parameters 

were created, and multivariate statistical methods, such 

as PCA and HCA, were applied to determine the 

chemical properties of groundwater. The relationship 

among quality indicators of groundwater samples was 

represented graphically with these tools. These analyses 

were performed using SPSS 26.0 (IBM, 2020) and 

XLSTAT software (XLSTAT, 2020).

Principal component analysis

 Principal Component Analysis (PCA) is the 

most commonly used multivariate statistical method for 

interpreting GWQ parameters. It is typically used to 

compress water quality datasets spanning multiple 

dimensions, reducing jitter and redundancy to facilitate 

Table 1: Criteria for WQI mapping (Prashanthi et al., 2004) 

S. No.  WQI index class  Status  

1.  I (0-25)  Excellent  

2.  II (26-50)  Good  

3.  III (51-75)  Poor  

4.  IV (76-100)  Very Poor  

5.  V (> 100)  Unfit for consumption  
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th 
Where, X  is a value of j GWQ parameters measured at ji

th th
i  location; X  is the mean value of j  parameter; and S  is j j

th 
the standard deviation of the j parameter.

Correlation matrix

 The variance proportion of one GWQ parameter 

explained by its relationship with another GWQ 

parameter may be measured in terms of a correlation 

coefficient. The correlation coefficient varies between -

1 and +1, demonstrating extreme dissimilarity and 

similarity, respectively, while a correlation coefficient of 

0 denotes the absence of any relationship between the 

variables. This study developed a correlation matrix for 

all GWQ parameters to understand their inter 

relationships.

Hierarchical cluster Analysis

 Cluster analysis (CA) involves dividing an 

observed dataset into different clusters or groups based 

on their similarities, as measured by their respective 

correlation coefficients (Davis, 2002). CA is a popular 

tool for evaluating the potential to group GWQ variables 

across various samples based on their similarities in 

hydrochemical characteristics (Cloutier et al., 2008; 

Zaki et al., 2018). The water quality variables typically 

used in CA include percentages of major ions, pH, 

and/or salinity levels (Van & Hodgson, 1986; Ground & 

Groeger, 1994). In this study, Hierarchical Cluster 

Analysis (HCA) was used as a data classification tool to 

group similar chemical parameters. According to the 

literature, HCA is the most commonly employed method 

among the different clustering techniques used in 

environmental sciences (Davis, 2002). The primary 

objective of applying HCA was to cluster multiple 

parameters into a single group. The Euclidean distance 

method was used to measure similarities and differences 

among selected variables, i and j, which were calculated 

as follows (Davis, 2002):

                                                               (4)

 Where, d  is the Euclidean distance; Z  and Z  ij ik jk

are the variables, k for objects i and j, respectively, and m 

is the number of variables.

å =
-=

m
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 The clustering is depicted graphically by a 

dendrogram derived from the application of the 

Euclidean distance approach and Ward's method. The 

Ward's method evaluates distances between clusters 

using an analysis of variance technique, aiming to reduce 

the sum of squares of any two clusters (hypothetical), 

which may be computed at each stage (Machiwal et al., 

2011). A short distance indicates the closeness of two 

chemical parameters, while a high distance indicates 

dissimilarity between the parameters.

Results And Discussion

GIS-based Water Quality Indexing

 WQI maps of pre-monsoon and post-monsoon 

seasons were generated using ArcGIS 10.5 software 

based on pre-selected GWQ parameters and the same 

were classified into different GWQ categories, i.e., 

'excellent' (Class I), 'good' (Class II), 'poor' (Class III), 

'very poor' (Class IV) and 'unfit for consumption' (Class 

V) for all individual sites (Fig. 2a). The WQI for Jakham 

River basin in pre-monsoon season with 76 sites was 

analysed and categorized, as per BIS and/or WHO 

standards. The computed WQIs ranged from 30 to 105 

within the basin during the pre-monsoon season. The 

analysis indicated that none of the sampling sites 

belonged to the Class I category. The GWQ maps 

highlighted that during the pre-monsoon season, 603.705 
2km , i.e., 63.42% of the total study area, possessed 'good' 

2water quality, followed by 326.02 km  (34.21% of the 

total study area) falling under the 'poor' category of 

GWQ. Furthermore, it was found that a minor proportion 

(2.21% of the total study area) of the area possessed the 

WQI under the 'very poor' category and a negligible 

portion (0.161% of the total study area) under the 

category of 'unfit for consumption'. The TDS in 

groundwater was identified as the most active GWQ 

parameter, followed by pH, EC, and Na during the pre-

monsoon season.
 The GWQ, during the post-monsoon season, is 

presented in Fig. 2(b). Similar to the pre-monsoon season, 

there was no sampling site found under the 'excellent' 

category during the post-monsoon season. About 490.89 
2km  (51.51%) of the basin was observed under 'poor' 
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Fig. 1: Location map of Jakham River Basin in southern Rajasthan

Fig. 2:  Groundwater quality index maps for (a) pre-monsoon (b) post-monsoon seasons
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2GWQ, followed by 400.54 km  (42.02%) area under 

'good' GWQ. A smaller proportion of the study area is 

found to be under the GWQ categories of 'very poor' 

(6.30%) and 'unfit for consumption' (0.16%). The central 

portion of the basin appears to have the highest 

concentration of minerals of desirable quality. The final 

WQI indicates a larger area (63.42%) under a 'good' 

GWQ rating in the pre-monsoon season, which further 

decreased to 42.02% in the post-monsoon season, due to 

the combined effects of geogenic and climatic factors. 

The Na and Ca contents were found to be active 

parameters for drinking purposes in the post-monsoon 

season.

Multi-variate Statistical Analysis

 A correction matrix of 13 GWQ parameters was 

generated to understand the relationships among the 

selected parameters (Table 2), which were used as 

independent variables in modelling while characterising 

the GWQ. The TDS was found to be strongly correlated 

(correlation coefficient over 0.9) with Cl and EC (Table 

2). Likewise, GWQ parameters such as TDS showed 

good correlations with Na, K, Ca, Mg, and HCO . 3

Additionally, Cl had a strong correlation with Na, K, Ca, 

and Mg, with correlation coefficients exceeding 0.75. 

Conversely, pH was poorly correlated with Cl and SO . It 4

was difficult to organise the parameters into components 

and assign some physical significance at this stage, since 

some parameters, such as F, SO , and NO , did not have 4 3

significant correlations with any other parameters. 

Therefore, the correlation matrix was further analysed 

using PCA. 
 During the post-monsoon season, TDS was 

found to have a good correlation with Na, Ca, and Mg 

(Table 3). Additionally, EC showed a good correlation 

with Cl. Similar to the pre-monsoon season, it was not 

easy to classify the GWQ parameters into components 

during the post-monsoon season and assign some 

physical significance at this stage, as some parameters, 

such as pH, F, SO , and NO , HCO , and CO , did not 4 3 3 3

have significant correlations with any other parameters. 

Therefore, the results of the correlation matrix were 

subjected to PCA.

Principal Component Analysis

 Adequacy of the GWQ data, prior to PCA, was 

verified with the help of K-M-O and Barlett's tests (Table 

4). MATLAB 2020 software was used for the above 

analysis. In the pre-monsoon and post-monsoon seasons, 

the test-statistic values were found to be 0.702 and 0.698, 

respectively, which are within the acceptable limit, 

indicatingthat the data are adequate for PCA.
 The PCA was applied to the correlation matrix of 

GWQ parameters, which consisted of 13 physico-

chemical parameters. Its purpose was to determine the 

individual PC loadings of each of the 13 variables that 

affect GWQ characteristics. Eigenvalues (i ) are g

frequently employed in order to derive the significant 

principal components (PCs). The i  value of a relevant g

variable defines its peak value. The Eigenvalues of a 

magnitude more than 1 indicate the significantly 

important PCs having considerable contributions to the 

total variations of the system. The PCs, having i  less than g

1, were discarded from further analysis because of their 

lack of significance (Muangthong & Shrestha, 2015).  As 
th 

of the 5 i value, the slope of the scree plot during both g 

seasons gradually becomes flatter. Hence, only the first 

four PCs were considered significant in this study, 

explaining 91.30% of the cumulative variance during the 

pre-monsoon and 70.44% of the cumulative variance 

during the post-monsoon season.
 During the pre-monsoon season, the four PCs, 

extracted based on eigenvalues greater than 1, explained 

57.92%, 17.38%, 7.77%, and 8.23% of the total variance, 

respectively (Table 5). Each PC contains some strong 

positive, negative and near-zero factor loadings. The first 

PC explains approximately 57.92% of the total variance 

and has strong factor loadings for EC, TDS, Na, Mg, and 

Cl, a moderate loading for K, HCO , NO , and Ca, and 3 3

st
weak loading values for SO . Hence, the PC1 of the 1  PC 4

is referred to as the 'salinity' factor with reference to 

strong loadings between Na and Cl ions. The moderate 

factor loadings between K and NO indicate the 3

incorporation of chemical fertilisers and animal waste 

into agricultural activities in the study area (Adam et al., 

2001). It was observed that the sanitation network was 

not seen during the sampling visits in the study area, and 
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Table 4: Results of K-M-O and Barlett's tests

K-M-O and Bartlett test Pre-monsoon Post-monsoon 

K-M-O adequacy  0.702 0.698 

Bartlett’s test spherecity  Chi-square 855.23 789.95 

 Degree of freedom 59 59 

 Significance 0 0 

 
Table 5: Factor loadings of significant principal components for pre-monsoon season

Water quality 

parameter 

Factor loadings of principal component 

1 2 3 4 

pH -0.003 0.215 -0.953 0.096 

EC 0.942 0.176 0.034 -0.097 

TDS 0.912 0.338 0.184 0.100 

Na 0.925 0.079 -0.018 0.030 

K 0.772 0.204 0.057 0.401 

Ca 0.697 0.500 0.460 0.056 

Mg 0.919 0.080 -0.080 0.071 

Cl 0.896 0.278 -0.017 0.129 

SO4 0.377 0.880 -0.151 0.003 

CO3 0.047 0.179 -0.123 0.947 

HCO3 0.779 -0.045 0.496 -0.173 

NO3 0.665 0.416 0.151 0.412 

F -0.046 -0.795 0.170 -0.376 

Eigenvalue 7.53 2.26 1.01 1.07 

Variance (%) 57.92 17.38 7.77 8.23 

Cumulative variance 

(%) 
57.92 75.30 83.07 91.30 

 
hence, there were instances in which untreated domestic 

sewage was directly discharged into the aquifers.
nd

 The 2  PC, or PC2, explained nearly 17.38% of 

the total variance and was attributed to a strong positive 

loading for SO4, which corresponded to anthropogenic 

activities in the field, such as crop fertilisation and other 

land-use activities, and a weak loading for NO . 3

thLikewise, the 4  PC, or PC4, explains 8.23% of the total 

variance, along with strong positive loadings for TDS and 

CO . The PCA highlighted the order of importance of 3

parameters, viz,. TDS> pH> EC> Na> Ca> Cl > Mg > 

CO > SO > HCO  in the pre-monsoon season.3 4 3

 In the post-monsoon season, the first four PCs 

explained 25.85%, 21.55%, 12.02%, and 11.02% of the 
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(a)

(b) 

Fig. 3: PCA of groundwater quality parameters forpre-monsoon (a) and post-monsoon (b)

total variance, with a total cumulative variance value of 

70.44% (Table 6). The results of the PCA further 

indicated that PC1 was found associated with strong 

loading values for Mg and NO , moderate loading values 3

for EC and TDS, and weak loading values for Cl (Table 

5), which were mostly distributed between the upper and 

central portions of the study area. The PC1 revealed that 

rock-water interaction with ion exchange was 

responsible for the geogenic hydro-geochemical 

evolution of groundwater (Bodrud-Doza et al., 2016). 

Das et al. (2019) have also reported that the origin of 

salinity (presence of Na-Cl) in croplands was primarily 

due to the use of chemical fertilisers, animal waste and 

industrial pollutants. Moreover, this factor also has 

moderate loadings for K and NO  indicating the 3,

cultivation activities and industrial disposals occurring 

near the water source in the study area.
nd The 2  PC, or PC2, explained nearly 21.55% of 

the entire variance (Table 5). The Ca content exhibited 

strong positive loading values, which indicated the 

influence of 'hardness' associated with the presence of 

carbonates in groundwater. Hence, the groundwater was 

rendered as unfit for drinking and irrigation purposes, 

and it was also responsible for weak loading of NO . The 3

rd 3 PC had positive factor loadings for Na and HCO , 3

which explained only 12.02% of the entire variation. This 

PC is usually associated with the seepage of untreated 
thsewage water into the groundwater. The 4  PC explained 

11.02% of the entire variation, along with a strong 

positive loading for CO .3
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Hierarchical Cluster Analysis

 Dendrograms illustrating results of HCA for 

groundwater quality parameters during pre-monsoon 

and post-monsoon seasons are depicted in Figs.4 and 5, 

respectively. In the HCA, groundwater quality 

parameters with higher degrees of similarity were 

assigned to the first cluster. Based on Fig. 4, it is evident 

that two main clusters were formed for classifying the 

groundwater quality parameters during the pre-

monsoon season. The first cluster consisted of four 

parameters, namely EC, TDS, Na, and Ca, which may be 

influenced by various sources, including over-pumping 

of groundwater, dissolution of alkaline rocks, and 

leaching of fertilisers from the soil horizon to the aquifer. 

The second cluster, which consisted of three parameters, 

i.e., K, Cl and Mg, is characterised by anthropogenic 

sources such as agricultural operations, sewage waste and 

drainage water infiltration from bleaching industries. It 

also became apparent that pH, F and SO  could not be 4

clustered properly with other clusters during the pre-

monsoon season.

Fig. 4: Dendrogram presenting clustering of groundwater quality parameters for pre-monsoon

Fig. 5: Dendrogram presenting clustering of groundwater quality parameters for Post-monsoon
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Table 6:  Factor loadings of significant principal components for post-monsoon season 

Water quality 

parameter 

Factor loadings of principal component 

1 2 3 4 

pH -0.182 0.116 -0.245 0.176 

EC 0.761 0.360 -0.307 -0.166 

TDS 0.556 0.558 0.205 0.342 

Na 0.149 0.020 0.852 -0.031 

K -0.717 0.291 -0.065 0.104 

Ca -0.035 0.953 0.065 0.056 

Mg 0.857 0.055 0.397 0.017 

Cl 0.476 0.641 -0.449 -0.095 

SO4 -0.898 -0.172 0.185 0.139 

CO3 -0.100 0.031 0.149 0.925 

HCO3 -0.338 0.101 0.619 0.164 

NO3 0.100 0.439 0.181 -0.734 

pH -0.182 0.116 -0.245 0.176 

Eigenvalue 3.36 2.80 1.56 1.43 

Variance (%) 25.85 21.55 12.02 11.02 

Cumulative 

variance (%) 
25.85 47.40 58.42 70.44 

 
 Similarly, during the post-monsoon season, two 

main clusters emerged among the groundwater quality 

parameters. The first cluster consisted of three 

parameters, viz., EC, TDS and Cl, whereas the second 

cluster consisted of nine parameters among which Na 

and HCO , K and SO  were found to be closely related 3 4

(Fig. 5). Based on the observations made through both 

dendrograms and correlation matrix, the TDS and EC 

parameters were found to be strongly correlated with 

respect to Ca, Na and Cl. The pH parameter, however, 

did not demonstrate any significant association with any 

of the groundwater quality parameters in the post-

monsoon season. The factors that primarily influenced 

the first cluster include salinity due to mineral 

dissolution, high evaporation, and flushing of 

evaporated minerals from sedimentary rocks. In 

contrast, the second cluster can be attributed to the 

dissolution of agricultural waste, such as inorganic 

fertilisers and anthropogenic activities, in the study area 

(Loganathan & Ahamed, 2017).
 

Conclusions

 This study attempts to characterise and interpret 

the groundwater quality of the Jakham River basin in 

southern Rajasthan, India, using an integrated approach 

of multivariate statistical analyses and geographic 

information system (GIS). Results of GIS-based water 

quality index (WQI) revealed that 63% of the 

groundwater samples of the pre-monsoon season and 

42% of the post-monsoon season were classed under the 

'good' category and found satisfactory for human 

consumption. Nevertheless, imparting a spatial sense to 

the water quality of local aquifers through spatial 

mapping of WQI highlighted the higher WQI values in 

the northern and central portions of the study area, 

whereas poor groundwater quality was observed in the 
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lowland areas. Results of principal component analysis 

(PCA) indicated that four principal components were 

identified as significant, accounting for 91.30% and 

70.44% of the total variance in the pre-monsoon and 

post-monsoon seasons, respectively; these four 

components acted as significant quality control factors. 

The findings of the PCA showed that the changes in the 

physicochemical properties of the groundwater strata 

are caused by both anthropogenic (i.e., excess fertiliser 

application and industrial waste) and geogenic factors 

(i.e., rock-water interaction). In addition, the outcomes 

of the correlation matrix showed a strong stake to the 

conclusions generated by PCA and hierarchical cluster 

analysis. Moreover, the findings of this study may be of 

service to water resource planners and policymakers in 

prioritising and safeguarding the groundwater supply 

from contamination, as well as in developing 

technology that maintains groundwater quality suitable 

for drinking.
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