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Abstract : In this study, groundwater quality in the Jakham River Basin, located in
southern Rajasthan, India, was characterised using a multivariate statistical approach
and a geographic information system (GIS). A total of 76 groundwater samples were
collected from different sites in the area. Two multivariate statistical approaches, i.e.,
principal component analysis (PCA) and hierarchical cluster analysis (HCA), were
applied to pre-monsoon and post-monsoon groundwater quality data to identify the
most critical factors controlling groundwater quality. Spatial maps of groundwater
quality parameters were developed using GIS. During the pre-monsoon and post-
monsoon seasons, the computed values of the Water Quality Index (WQI) ranged
from 28.28 to 116.74 and from 29.49 to 111.98, respectively. Based on values of GIS-
based WQI, 63.42 and 42.02% of the groundwater samples were classified as 'good'
during pre-monsoon and post-monsoon seasons, respectively. The interpretation of
PCA results revealed the impact of geological and human interventions on increased
levels of electrical conductivity, total dissolved solids, sodium, chloride, bicarbonate,
fluoride, and sulphate. In this study, Ward's method was used for clustering of
samples in HCA. The findings of the HCA indicated that there were four distinct
groundwater quality groups within the basin. The findings of this study provide a
reference database for the groundwater quality, facilitating further development and
management of groundwater resources in the study area. Moreover, PCA and HCA
were recommended as suitable tools for simplification of the evaluation process in
groundwater quality analysis.

Keywords: Geographic information system, Jakham river basin; Principal component
analysis; Hierarchical cluster Analysis;, Water quality index.

Introduction

One of the most pressing problems in today's
world is ensuring an adequate supply of good-quality
water. This leads to sustainable management of water
resources at stakeholder end (Das et al., 2019), and to
achieve this cutting-edge concept, a dedicated approach
is required. In India, the majority of the population relies
on rivers and lakes for fulfilling their water
requirements; however, the management of sewage and
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discharged water is very poor. As a result, the available
water is prone to contamination, which has a negative
impact on human health. Therefore, it is necessary to
monitor available water resources (Noshadi &
Ghafourian, 2016). According to a United Nations report,
22% of human deaths are directly linked to waterborne
diseases (Sharma et al., 2021). This emphasises the need

to characterise the groundwater quality.
Characterisation of groundwater quality (GWQ)

refers to the physico-chemical and statistical analysis of
groundwater, based on different standardised approaches
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(Gautam et al., 2022a). GWQ is a significant aspect for
the sustainable growth of water resources, as many
sectors, such as irrigation, drinking, and industrial, rely
on it (Ravikumar et al., 2011; Mohamed & Elmahdy,
2015). As all geological formations impact groundwater
quality in the aquifer system, the quality of groundwater
is dependent on the combination of various
hydrogeological activities (Lee & Song, 2007; Batayneh
& Al-Taani, 2016; Abdelaziz et al., 2020). The
assessment of GWQ is a challenging task that involves
handling a large number of variables, each of which has
the potential to exert a specific impact on the overall
GWQ (Bodrud-Doza et al., 2016). Additionally, GWQ
exhibits spatio-temporal variability that is commonly
influenced by topography, industrial effluents, open
sewage dumping, and agricultural waste (Zavareh &
Maggioni, 2018; Barkat et al., 2022; Mohseni et al.,
2022). In southern Rajasthan of India, GWQ is rarely
characterised using multiple and integrated approaches
(Machiwal etal.,2011; Gautam et al., 2022a). The GWQ
indexing is a new approach for determining the
potability of water for human consumption, with an
index varying on a 0-100 scale that represents the
suitability of groundwater both in space and time (e.g.,
Gautam et al., 2023). The spatial maps of groundwater
quality can also be generated through the integrated
application of geographic information systems (GIS)
and spatial interpolation methods such as inverse
distance weighting (IDW), as an efficient tool for
interpreting the spatial variation of GWQ (Tirkey et al.,
2017; Gauns et al., 2020). The water quality index
(WQI) is nowadays employed as a customary approach
for evaluating the GWQ (Khan & Jhariya, 2017; Kawo
& Karuppannan, 2018). The WQI has been employed to
assess the spatial and temporal variability of aquifers'
water quality in many states of India, including
Rajasthan, Karnataka, and Delhi, among others, as it
provides a single value and is easy to comprehend
(Mohamed & Elmahdy, 2015; Shil etal.,2019).

The correlation matrix establishes relationships
among the various GWQ parameters under the influence
of geological and chemical processes (Das et al., 2019).
It helps to detect the key influencing groups of water
quality parameters and their sources of origin. Bodrud-
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Dozaetal. (2016) monitored and analysed the GWQ of 60
open wells in Faridpur district of central Bangladesh. The
outcomes of the correlation matrix were consistent with
the results of other statistical analyses (e.g., Roy et al.,
2021). The spatio-temporal distributions of GWQ
parameters were also estimated using geostatistical
analysis (e.g., Ram et al., 2021). In literature, few
statistical methods, such as the projection approach, have
been utilised for evaluating the WQI (Igbal et al., 2021).
However, PCA has emerged as a vital tool to deal with
multivariate datasets concerning different GWQ
parameters (Shil et al., 2019; Mohseni et al., 2022). In
general, principal component analysis (PCA) has the
primary function of simplifying the processing of big data
input variables by isolating the most important aspects of
a massive dataset (Vishwakarma & Thakur, 2012). As a
part of PCA, grouped variables, termed as principal
components (PCs), may be transformed using factor
analysis (FA) (Jankowska et al., 2017). Hence, in this
study, the influential GWQ parameters of the local
aquifer were assessed using PCA.

Hierarchical cluster analysis (HCA) displays the
clustering of different GWQ parameters by identifying
their proximity with respect to particular features (Omo-
Irabor et al., 2008; Teixeira et al., 2021). It facilitates in
physico-chemical understanding of GWQ chemistry. In
this study, a dendrogram was generated using Ward's
method, with squared Euclidean distance serving as the
similarity metric. Teixeira et al. (2021) employed HCA to
examine the homogeneity and characteristics of GWQ,
resulting in a better understanding of the geological
action on the aquifer system.

The present study aimed at characterising
groundwater quality in the Jakham River Basin by
employing multivariate statistical techniques in a GIS
environment. This study applies PCA and HCA
(Loganathan & Ahamed, 2017; Mohseni et al., 2022) to
examine the concentration of critically influencing GWQ
parameters and the hazardous concentrations of fluoride,
nitrate, and sulphate (Herojeet et al., 2016; Sharma et al.,
2021). As per reports of the Central Ground Water Board
(CGWB, 2017), two blocks of the study area, namely
Pratapgarh and Chhoti Sadri, have been characterised as a
sub-critical stage, which is due to high fluctuations in
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groundwater level and critical GWQ in pre-monsoon and
post-monsoon seasons (Bouteraa et al., 2019; Gautam et
al., 2022c¢). It is expected that the findings of this study
will aid in ensuring GWQ and maintaining an
environment that permits the sustainable use of
groundwater resources in the study area.

Materials And Methods

Overview of Study Area

Jakham River basin is located between the
latitudes of 24.451°N - 23.988°N and the longitudes of
74.501°E - 74.802°E, covering an area of 953 km” in the
upper reaches of the Mahi River basin (Fig. 1). The
south-west portion of the basin evidences forest and hilly
area, while northeast-southeast portion is covered with
urban and agricultural lands, which reflects the land use
diversity within the basin (Gautam et al., 2021; Gautam
et al., 2022a). The soil characteristics of the basin
resemble those of black, fertile soil, and the climate of the
basin varies from sub-humid to semi-arid, with a
moderate average annual rainfall of 700 mm.

The geology of the basin is composed of various
rock formations, which are predominantly igneous and
meta-sedimentary in nature, and influence the dynamics
of groundwater in the subsurface strata. Approximately
45% of the southern portion of the study area consists of
basaltic geologic formations, while the remaining
portion features a diverse range of geological formations
(Gautam et al., 2022b). However, these types of rock
formations are not considered good aquifers. Moderate
groundwater potential occurs within the contact zone of
basalt and other lithological units. The basin also exhibits
a moderate evaporation rate, i.e., approximately 11.20
mm/day in the summer season. The major part of the
basin is involved in the cultivation of opium and
processing of its by-products, which leads to overuse of
fertilisers and saline chemicals. Hence, the north-to-
central part of the basin has a groundwater salinity

CBE ratio =

(Z Cations — Z Anions)
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problem. In this basin, groundwater is only found in
semi-confined to unconfined conditions. However,
phreatic aquifers are the primary sources of water for
both human consumption and agricultural activities. The
locations of the groundwater sampling sites are shown in
Figure 1.

Data Collection

Groundwater samples were collected manually
from a total of 76 sites in the basin during both the pre-
monsoon and post-monsoon seasons during 2019-2020
using a well-established stratified sampling technique.
The groundwater level in the study area varies from 15-
30 m below ground level (bgl) and 25-40 m bgl in pre-
monsoon and post-monsoon seasons, respectively. In
addition, GWQ data for the last 13 years (2006-2018)
were collected from the Ground Water Department
(GWD), Jaipur and CGWB, Jaipur, for statistical
analyses. High-quality, sealed polyethene bottles (250
mL) were used for sample collection. Some GWQ
parameters, such as electrical conductivity (EC), pH,
total dissolved solids (TDS), temperature, fluoride (F),
and residual chloride (Cl), were analysed on the spot
usinga low-cost Rapid Water Quality Testing Kit
(RaQKT). This low-cost RaQKT kit was developed for
the on-site determination of drinking and irrigation water
quality, which helps reduce the workload in laboratory
work (Gautam et al., 2022¢). The remaining parameters
were analysed in the Groundwater Laboratory of the
College of Technology and Engineering (CTAE),
Udaipur, India. The regulations and recommendations
described by Bureau of Indian Standards (BIS), New
Delhi (BIS, 2012) were used to analyse the major cations,
i.e., calcium (Ca), magnesium (Mg), sodium (Na),
potassium (K) and anions, i.e., bi-carbonate (HCO,),
chloride (Cl), sulfate (SO,) and nitrate (NO,). We used
the Charge Balance Error (CBE) method to ensure the
precision of our analysed samples (CBE) (Freeze &
Cherry, 1979):

(Z Cations + Z Anions)

x100% (1)
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Most of the investigated samples had
concentrations of CBE below 10%.

The flowchart of the methodology, which
illustrates the processes involved in characterising
GWQ, is shown in the methodology section. This
flowchart outlines the step-by-step process for spatial
mapping of the WQI index and statistical analyses of
GWQ parameters using PCA, HCA, and a correlation
matrix.

Calculation of Water Quality Index
The WQI is a common approach to express
significant quantities of GWQ data as a single numerical
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value. It indicates the parameters whose index values
express the complete water quality. This indexing is
suitable for analysing the quality of drinking and
irrigation water. The criteria for WQI mapping are
presented in Table 1. Brown et al. (1972) formulated the
weighted arithmetic indexing (WAI) method, which is
often used for the computation of WQI. The following
expression has been applied for the calculation of WQI:

=) 2
> ) ®

Table 1: Criteria for WQI mapping (Prashanthi et al., 2004)

S.No. WQI index class Status

l. 1(0-25) Excellent

2. I1 (26-50) Good

3. III (51-75) Poor

4. IV (76-100) Very Poor

5. V (>100) Unfit for consumption

Multi-variate Statistical Techniques for Interpretation
of Groundwater Quality

In this study, box and whisker plots of GWQ parameters
were created, and multivariate statistical methods, such
as PCA and HCA, were applied to determine the
chemical properties of groundwater. The relationship
among quality indicators of groundwater samples was
represented graphically with these tools. These analyses
were performed using SPSS 26.0 (IBM, 2020) and
XLSTAT software (XLSTAT, 2020).

Principal component analysis

Principal Component Analysis (PCA) is the
most commonly used multivariate statistical method for
interpreting GWQ parameters. It is typically used to
compress water quality datasets spanning multiple
dimensions, reducing jitter and redundancy to facilitate

efficient analysis. PCA approaches datasets consisting of
several correlated components by portraying them as
smaller sets of independent, uncorrelated variables. It
incorporates data in a correlation matrix and reorganises
it in a system that can improve the interpretability of the
underlying data structure. The process of PCA
commences with the generation of a novel set of GWQ
variables (called principal components or PCs) based on
linear combinations of variables belonging to the original
datasets. Generally, the entire PCA process can be
divided into two steps, viz., standardisation of data and
extraction of PCs. Initially, measured water quality data
(X;) were standardised by Z-scale transformation using
the following formula (Kawo & Karuppannan, 2018):

.y =X,
S, 3)

J
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Where, X is a value of j"GWQ parameters measured at
i" location; X, is the mean value of " parameter; and S,is
the standard deviation of the ]"parameter.

Correlation matrix

The variance proportion of one GWQ parameter
explained by its relationship with another GWQ
parameter may be measured in terms of a correlation
coefficient. The correlation coefficient varies between -
1 and +1, demonstrating extreme dissimilarity and
similarity, respectively, while a correlation coefficient of
0 denotes the absence of any relationship between the
variables. This study developed a correlation matrix for
all GWQ parameters to understand their inter
relationships.

Hierarchical cluster Analysis

Cluster analysis (CA) involves dividing an
observed dataset into different clusters or groups based
on their similarities, as measured by their respective
correlation coefficients (Davis, 2002). CA is a popular
tool for evaluating the potential to group GWQ variables
across various samples based on their similarities in
hydrochemical characteristics (Cloutier et al., 2008;
Zaki et al., 2018). The water quality variables typically
used in CA include percentages of major ions, pH,
and/or salinity levels (Van & Hodgson, 1986; Ground &
Groeger, 1994). In this study, Hierarchical Cluster
Analysis (HCA) was used as a data classification tool to
group similar chemical parameters. According to the
literature, HCA is the most commonly employed method
among the different clustering techniques used in
environmental sciences (Davis, 2002). The primary
objective of applying HCA was to cluster multiple
parameters into a single group. The Euclidean distance
method was used to measure similarities and differences
among selected variables, i and j, which were calculated
as follows (Davis, 2002):

d; = Zk=1 (Zisy=Z ) “)

Where, d, is the Euclidean distance; Z, and Z,,
are the variables, k for objects i and j, respectively, and m
is the number of variables.
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The clustering is depicted graphically by a
dendrogram derived from the application of the
Euclidean distance approach and Ward's method. The
Ward's method evaluates distances between clusters
using an analysis of variance technique, aiming to reduce
the sum of squares of any two clusters (hypothetical),
which may be computed at each stage (Machiwal et al.,
2011). A short distance indicates the closeness of two
chemical parameters, while a high distance indicates
dissimilarity between the parameters.

Results And Discussion

GIS-based Water Quality Indexing

WQI maps of pre-monsoon and post-monsoon
seasons were generated using ArcGIS 10.5 software
based on pre-selected GWQ parameters and the same
were classified into different GWQ categories, i.e.,
'excellent' (Class 1), 'good' (Class II), 'poor' (Class III),
'very poor' (Class V) and 'unfit for consumption' (Class
V) for all individual sites (Fig. 2a). The WQI for Jakham
River basin in pre-monsoon season with 76 sites was
analysed and categorized, as per BIS and/or WHO
standards. The computed WQIs ranged from 30 to 105
within the basin during the pre-monsoon season. The
analysis indicated that none of the sampling sites
belonged to the Class I category. The GWQ maps
highlighted that during the pre-monsoon season, 603.705
km’, i.e., 63.42% of the total study area, possessed 'good'
water quality, followed by 326.02 km’ (34.21% of the
total study area) falling under the 'poor' category of
GWQ. Furthermore, it was found that a minor proportion
(2.21% of the total study area) of the area possessed the
WQI under the 'very poor' category and a negligible
portion (0.161% of the total study area) under the
category of 'unfit for consumption'. The TDS in
groundwater was identified as the most active GWQ
parameter, followed by pH, EC, and Na during the pre-
monsoon season.

The GWQ, during the post-monsoon season, is
presented in Fig. 2(b). Similar to the pre-monsoon season,
there was no sampling site found under the 'excellent'
category during the post-monsoon season. About 490.89
km’ (51.51%) of the basin was observed under 'poor'
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GWQ, followed by 400.54 km® (42.02%) area under
'good' GWQ. A smaller proportion of the study area is
found to be under the GWQ categories of 'very poor'
(6.30%) and 'unfit for consumption' (0.16%). The central
portion of the basin appears to have the highest
concentration of minerals of desirable quality. The final
WQI indicates a larger area (63.42%) under a 'good'
GWQ rating in the pre-monsoon season, which further
decreased to 42.02% in the post-monsoon season, due to
the combined effects of geogenic and climatic factors.
The Na and Ca contents were found to be active
parameters for drinking purposes in the post-monsoon
season.

Multi-variate Statistical Analysis

A correction matrix of 13 GWQ parameters was
generated to understand the relationships among the
selected parameters (Table 2), which were used as
independent variables in modelling while characterising
the GWQ. The TDS was found to be strongly correlated
(correlation coefficient over 0.9) with Cl and EC (Table
2). Likewise, GWQ parameters such as TDS showed
good correlations with Na, K, Ca, Mg, and HCO..
Additionally, Cl had a strong correlation with Na, K, Ca,
and Mg, with correlation coefficients exceeding 0.75.
Conversely, pH was poorly correlated with Cl and SO,. It
was difficult to organise the parameters into components
and assign some physical significance at this stage, since
some parameters, such as F, SO,, and NO,, did not have
significant correlations with any other parameters.
Therefore, the correlation matrix was further analysed
using PCA.

During the post-monsoon season, TDS was
found to have a good correlation with Na, Ca, and Mg
(Table 3). Additionally, EC showed a good correlation
with Cl. Similar to the pre-monsoon season, it was not
easy to classify the GWQ parameters into components
during the post-monsoon season and assign some
physical significance at this stage, as some parameters,
such as pH, F, SO,, and NO,, HCO,, and CO,, did not
have significant correlations with any other parameters.
Therefore, the results of the correlation matrix were
subjected to PCA.

Gautam et al.

Principal Component Analysis

Adequacy of the GWQ data, prior to PCA, was
verified with the help of K-M-O and Barlett's tests (Table
4). MATLAB 2020 software was used for the above
analysis. In the pre-monsoon and post-monsoon seasons,
the test-statistic values were found to be 0.702 and 0.698,
respectively, which are within the acceptable limit,
indicatingthat the data are adequate for PCA.

The PCA was applied to the correlation matrix of
GWQ parameters, which consisted of 13 physico-
chemical parameters. Its purpose was to determine the
individual PC loadings of each of the 13 variables that
affect GWQ characteristics. Eigenvalues (i,) are
frequently employed in order to derive the significant
principal components (PCs). The i, value of a relevant
variable defines its peak value. The Eigenvalues of a
magnitude more than 1 indicate the significantly
important PCs having considerable contributions to the
total variations of the system. The PCs, having i, less than
1, were discarded from further analysis because of their
lack of significance (Muangthong & Shrestha, 2015). As
of the 5" i, value, the slope of the scree plot during both
seasons gradually becomes flatter. Hence, only the first
four PCs were considered significant in this study,
explaining 91.30% of the cumulative variance during the
pre-monsoon and 70.44% of the cumulative variance
during the post-monsoon season.

During the pre-monsoon season, the four PCs,
extracted based on eigenvalues greater than 1, explained
57.92%,17.38%, 7.77%, and 8.23% of the total variance,
respectively (Table 5). Each PC contains some strong
positive, negative and near-zero factor loadings. The first
PC explains approximately 57.92% of the total variance
and has strong factor loadings for EC, TDS, Na, Mg, and
Cl, a moderate loading for K, HCO,, NO,, and Ca, and
weak loading values for SO,. Hence, the PC1 of the 1" PC
is referred to as the 'salinity' factor with reference to
strong loadings between Na and Cl ions. The moderate
factor loadings between K and NO,indicate the
incorporation of chemical fertilisers and animal waste
into agricultural activities in the study area (Adam et al.,
2001). It was observed that the sanitation network was
not seen during the sampling visits in the study area, and



187

Characterization of groundwater quality

I Y0 9610 LYT0 Lo €190-  LT0°0 LSSL'0- ¥000-  6S00  €STO-  OVE0-  +00°0- A
I 1810~ SLSO- €€T0-  SITO  0SI'0 L8€°0  L100  0SI'0 89S0  80TO  ¥¥I0- SON

I §1T°0 §SE0  98T0-  I€1°0- ¥600  ¥000 0790  TSO'0-  68€0-  960°0- ‘0dH

I 6TT0  61T0-  190°0- II1°0 910 L£0'0 6090  ¥LTO- 69070 €00

I JF8S0- |, 1690 §91°0- 7690 8600  6LF0- . I6L0  90T0 'OS

I vy 0 690 S9T'0-  #x£080 6080  SET0 D

I SLOO  60S0-  OPLO 8YS0 $01°0- SN

I €9€0 %6690 9970 €000 €)

I v00'0-  STTO-  TECO- 1810 |

I LS8L°0  TSO'0- 8100 eN

I vOr'0 1,00 SAL

I $T1°0- oy

[ Hd

k| ‘ON  ‘ODH ‘0D "OS D 3N o) | eN Sal od He o oweaeg

uoseas uoosuow-jsod 10y s1ojowered Ajjenb 19)em JUSISHIP JO XLIBW SUOIIB[ALIOO-INU] ¢ d[qe],



188

Table 4: Results of K-M-O and Barlett's tests

Gautam et al.

K-M-O and Bartlett test Pre-monsoon Post-monsoon

K-M-O adequacy 0.702 0.698

Bartlett’s test spherecity Chi-square 855.23 789.95
Degree of freedom 59 59
Significance 0 0

Table 5: Factor loadings of significant principal components for pre-monsoon season

Water quality Factor loadings of principal component

parameter 1 2 3 4
pH -0.003 0.215 -0.953 0.096
EC 0.942 0.176 0.034 -0.097
TDS 0912 0.338 0.184 0.100
Na 0.925 0.079 -0.018 0.030
K 0.772 0.204 0.057 0.401
Ca 0.697 0.500 0.460 0.056
Mg 0.919 0.080 -0.080 0.071
Cl 0.896 0.278 -0.017 0.129
SO, 0.377 0.880 -0.151 0.003
COs 0.047 0.179 -0.123 0.947
HCO; 0.779 -0.045 0.496 -0.173
NO; 0.665 0.416 0.151 0.412
F -0.046 -0.795 0.170 -0.376
Eigenvalue 7.53 2.26 1.01 1.07
Variance (%) 57.92 17.38 7.77 8.23

Cumulative variance

57.92
(Vo)

75.30

83.07 91.30

hence, there were instances in which untreated domestic

sewage was directly discharged into the aquifers.

The 2™ PC, or PC2, explained nearly 17.38% of

the total variance and was attributed to a strong positive

loading for SO4, which corresponded to anthropogenic

activities in the field, such as crop fertilisation and other

land-use activities, and a weak loading for NO,.

Likewise, the 4" PC, or PC4, explains 8.23% of the total
variance, along with strong positive loadings for TDS and
CO,. The PCA highlighted the order of importance of
parameters, viz,, TDS> pH> EC> Na> Ca> Cl > Mg >
CO,>S0,>HCO, in the pre-monsoon season.

In the post-monsoon season, the first four PCs
explained 25.85%, 21.55%, 12.02%, and 11.02% of the
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Fig. 3: PCA of groundwater quality parameters forpre-monsoon (a) and post-monsoon (b)

total variance, with a total cumulative variance value of
70.44% (Table 6). The results of the PCA further
indicated that PC1 was found associated with strong
loading values for Mg and NO,, moderate loading values
for EC and TDS, and weak loading values for Cl (Table
5), which were mostly distributed between the upper and
central portions of the study area. The PC1 revealed that
rock-water interaction with ion exchange was
responsible for the geogenic hydro-geochemical
evolution of groundwater (Bodrud-Doza et al., 2016).
Das et al. (2019) have also reported that the origin of
salinity (presence of Na-Cl) in croplands was primarily
due to the use of chemical fertilisers, animal waste and
industrial pollutants. Moreover, this factor also has
moderate loadings for K and NO, indicating the
cultivation activities and industrial disposals occurring

near the water source in the study area.

The 2" PC, or PC2, explained nearly 21.55% of
the entire variance (Table 5). The Ca content exhibited
strong positive loading values, which indicated the
influence of 'hardness' associated with the presence of
carbonates in groundwater. Hence, the groundwater was
rendered as unfit for drinking and irrigation purposes,
and it was also responsible for weak loading of NO,. The
3" PC had positive factor loadings for Na and HCO,,
which explained only 12.02% of the entire variation. This
PC is usually associated with the seepage of untreated
sewage water into the groundwater. The 4" PC explained
11.02% of the entire variation, along with a strong
positive loading for CO,.
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Hierarchical Cluster Analysis

Dendrograms illustrating results of HCA for
groundwater quality parameters during pre-monsoon
and post-monsoon seasons are depicted in Figs.4 and 5,
respectively. In the HCA, groundwater quality
parameters with higher degrees of similarity were
assigned to the first cluster. Based on Fig. 4, it is evident
that two main clusters were formed for classifying the
groundwater quality parameters during the pre-
monsoon season. The first cluster consisted of four

Gautam et al.

parameters, namely EC, TDS, Na, and Ca, which may be
influenced by various sources, including over-pumping
of groundwater, dissolution of alkaline rocks, and
leaching of fertilisers from the soil horizon to the aquifer.
The second cluster, which consisted of three parameters,
i.e., K, Cl and Mg, is characterised by anthropogenic
sources such as agricultural operations, sewage waste and
drainage water infiltration from bleaching industries. It
also became apparent that pH, F and SO, could not be
clustered properly with other clusters during the pre-
monsoon season.

Dendrogram using Ward Method
Rescaled Distance Cluster Combine
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Fig. 4: Dendrogram presenting clustering of groundwater quality parameters for pre-monsoon
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Fig. 5: Dendrogram presenting clustering of groundwater quality parameters for Post-monsoon
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Table 6: Factor loadings of significant principal components for post-monsoon season

Water quality Factor loadings of principal component

parameter 1 2 3 4
pH -0.182 0.116 -0.245 0.176
EC 0.761 0.360 -0.307 -0.166
TDS 0.556 0.558 0.205 0.342
Na 0.149 0.020 0.852 -0.031
K -0.717 0.291 -0.065 0.104
Ca -0.035 0.953 0.065 0.056
Mg 0.857 0.055 0.397 0.017
Cl 0.476 0.641 -0.449 -0.095
SO, -0.898 -0.172 0.185 0.139
CO; -0.100 0.031 0.149 0.925
HCO; -0.338 0.101 0.619 0.164
NO; 0.100 0.439 0.181 -0.734
pH -0.182 0.116 -0.245 0.176
Eigenvalue 3.36 2.80 1.56 1.43
Variance (%) 25.85 21.55 12.02 11.02
Cumulative 25.85 47.40 58.42 70.44

variance (%)

Similarly, during the post-monsoon season, two
main clusters emerged among the groundwater quality
parameters. The first cluster consisted of three
parameters, viz., EC, TDS and Cl, whereas the second
cluster consisted of nine parameters among which Na
and HCO,, K and SO, were found to be closely related
(Fig. 5). Based on the observations made through both
dendrograms and correlation matrix, the TDS and EC
parameters were found to be strongly correlated with
respect to Ca, Na and Cl. The pH parameter, however,
did not demonstrate any significant association with any
of the groundwater quality parameters in the post-
monsoon season. The factors that primarily influenced
the first cluster include salinity due to mineral
dissolution, high evaporation, and flushing of
evaporated minerals from sedimentary rocks. In
contrast, the second cluster can be attributed to the
dissolution of agricultural waste, such as inorganic
fertilisers and anthropogenic activities, in the study area

(Loganathan & Ahamed, 2017).
Conclusions

This study attempts to characterise and interpret
the groundwater quality of the Jakham River basin in
southern Rajasthan, India, using an integrated approach
of multivariate statistical analyses and geographic
information system (GIS). Results of GIS-based water
quality index (WQI) revealed that 63% of the
groundwater samples of the pre-monsoon season and
42% of the post-monsoon season were classed under the
'good' category and found satisfactory for human
consumption. Nevertheless, imparting a spatial sense to
the water quality of local aquifers through spatial
mapping of WQI highlighted the higher WQI values in
the northern and central portions of the study area,
whereas poor groundwater quality was observed in the
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lowland areas. Results of principal component analysis
(PCA) indicated that four principal components were
identified as significant, accounting for 91.30% and
70.44% of the total variance in the pre-monsoon and
post-monsoon seasons, respectively; these four
components acted as significant quality control factors.
The findings of the PCA showed that the changes in the
physicochemical properties of the groundwater strata
are caused by both anthropogenic (i.e., excess fertiliser
application and industrial waste) and geogenic factors
(i.e., rock-water interaction). In addition, the outcomes
of the correlation matrix showed a strong stake to the
conclusions generated by PCA and hierarchical cluster
analysis. Moreover, the findings of this study may be of
service to water resource planners and policymakers in
prioritising and safeguarding the groundwater supply
from contamination, as well as in developing
technology that maintains groundwater quality suitable
for drinking.
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