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Introduction

Soils play a critical role in the global carbon (C) 

cycle, serving as a major reservoir of terrestrial carbon. 

Globally, the terrestrial biosphere holds approximately 

75% of the total carbon stock (Tarnocai et al., 2009; Jiao 

et al., 2020). Studies on soil carbon balance in Europe 

indicate that forests and grasslands act as net carbon 

sinks, sequestering 20 ± 12 g C m⁻² yr⁻¹ and 57 ± 34 g C 
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m⁻² yr⁻¹, respectively, while croplands exhibit a lower 

sequestration rate of 10 ± 9 g C m⁻² yr⁻¹ (Schulze et al., 

2009). These variations highlight the influence of land 

use on soil carbon dynamics and the need for targeted 

management strategies to enhance soil carbon 

sequestration. Further, carbon research in agricultural 

soils showed significant potential to sequester soil 

organic carbon (SOC) so as to mitigate climate change 

and to maintain crop productivity  (Zhang et al.,  2014). 

The sequestered carbon in agricultural soils depends on 



management strategies and environmental conditions 

(Luo et al.,  2010). India's soil carbon stocks are 

estimated to be only one-third to two-thirds of the global 

average, primarily due to its long history of cultivation, 

intensive land use, and agricultural management 

practices (Lal, 2004). 
The key biophysical factors influencing SOC 

dynamics include climate, vegetation, topography, 

intrinsic soil properties, land use, and management 

practices (Wang et al., 2012). Changes in SOC content 

are strongly correlated with soil structural stability 

(Nayak et al., 2019), temperature and moisture 

conditions (Lal, 2004), and the incorporation and 

composition of crop residues (Gao et al., 2016). Path 

analysis has been widely used in soil studies to explore 

the cause-and-effect relationships between soil 

properties and various processes, including heavy metal 

adsorption (Krishnasamy & Mathan, 2001), potassium 

dynamics (He & Chen, 2013), and phosphorus retention 

in acidic soils (Ige et al., 2007; Boke et al., 2015). An 

integrative approach of correlation and path analyses is 

needed to organize and present relationships between 

dependent and independent variables controlling soil 

organic carbon density (Zhongkui et al.,  2017). 
The interrelationships between soil organic 

carbon and soil properties in the humid hilly region of 
3+Cameroon showed that, SOC and exchangeable Al  has 

strong relationships in the Mollic Endoaquents. Total 

SOC stocks up to 1m depth is varied from 260.1 and 
−1363.5 t ha , and controlled by genetic horizon depth, 

while land-use type influences across genetic surface 

horizons (Kame et al.,  2021). The path analysis and 

correlation studies in Assam soils reported the strong 

influence of soil texture on soil organic carbon over 

other environmental factors (Baruah et al, 2020). 
The nonexistence of a SOC database at 

landscape level in drought-hit maize growing areas of 

Karnataka could limit its ability to, estimate SOC stocks 

at local scales and demands for baselines for large-scale 

inventories to improve the accuracy of state-level SOC 

databases. In Karnataka, there is a dearth of soil 

information on the SOC stocks. Dryland agriculture is 

dominant and constitutes areas of intensive maize 

production that would significantly impact the soil 

carbon storage potential. Hence, this study aims to assess 

SOC content and analyze its interrelationships with key 

biophysical factors across Karnataka. Path coefficient 

analysis was employed to interpret complex pedological 

processes and express them as functions of conceptual 

environmental factors, providing a structured approach 

to understanding SOC dynamics.

Materials and methods

Details of the study area, soil sampling, and 

determination

 The study area under Sujala 3 project is confined 

to 7 agro-climatic zones where maize is predominantly 

grown (Table 1). The detailed soil survey on the 1:10,000 

scale was carried out during 2016-2019 as per the 

guidelines of Soil Survey Staff 2017). During this  (

survey, 596 micro watersheds were selected covering 

285105 ha (Hegde et  al., 2017). Two hundred and two  

soil profiles were studied and classified up to subgroup 

level as per Soil Survey Staff (2014). Horizon wise soil 

samples were collected and air-dried for fine earth 

fraction. The soil samples were, air-dried, ground, and 

passed through a 0.15 mm sieve for determination of 

both SOC and SIC. The particle size distribution was 

done using the Bouyoucos method (Bouyoucos, 1962). 

The cation exchange capacity was determined as per the 

distillation method (Sarma et al., 1987). The organic  

carbon was determined using the wet oxidation method 

(Walkey and Black, 1934). The calcium carbonate was 

determined using the acid neutralization method 

(Jackson, 1973). The pedotransfer function was used to 

estimate the bulk density of soils (Kaur et al., 2002) as::
ln ρb = 0.313 – 0.191 OC + 0.02102 Clay – 0.000476 

2(Clay)  – 0.00432 Silt

Estimation of soil organic carbon density

 Estimation of SOC density at depth (0-30 cm) 

was calculated using the formula as given in Equation 1 

(IPCC, 2003):
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Farmer's survey

 A structured questionnaire was used to collect 

data on fertilizer use patterns and maize yield from maize 

farmers through personal interviews. The current 

general fertilizer recommendations were compared with 

soil test-based recommendations for specific yield 

targets, ensuring a balanced fertilizer application 

approach. The actual nutrient doses applied by farmers 

were analyzed against the calculated optimal doses to 

quantify fertilizer misapplication. Both overuse and 

underuse of nutrients were considered detrimental— 

excess application leading to wastage and environmental 

concerns, while deficiencies contributing to soil nutrient 

depletion. The financial implications of misapplication 

were assessed based on the market value of nitrogen (N), 

phosphorus (P), and potassium (K). The net change in 

income per hectare was determined by comparing the 

potential additional benefits of balanced fertilization 

with the costs involved in correcting fertilizer 

misapplication 

Statistical analysis

 Descriptive statistics, Correlation, and 

regression analysis was performed using SPSS version 

23.0. The path analysis was performed to estimate the 

direct and indirect effects of soil properties (sand, silt, 

clay, CEC, pH, EC, and exchangeable cations) as well as 

environmental factors (rainfall and elevation) on SOCD 

of major maize growing areas in Northern transitional 

dry zone of Karnataka using SPSS 23.0. 

Results and Discussion 

Descriptive statistics of exploratory variables

Thirteen soil variables of 31 sites of maize 

growing areas were used for estimation of descriptive 

statistics and K-S test of normality (Table 1). The mean 
-1

SOCD is 20.5±9.3 Mg ha  with a CV of 45.3%. The 

skewness is fairly symmetrical (0.3) with platykurtic (-

1.0) and a significant K-S test at a 5% level of 

significance. These soils are slightly alkaline (mean 

pH=7.7±1.0) within the range of moderately acid (pH of 

5.8) to strongly alkaline (pH of 9.0). The particle size 

class is fine loamy with mean clay of 27.6±13.9% with 

high variability (CV of 50.36%) and sand content of 

62.1±18.1% (moderate variability-CV of 29.57 %). The 

particle size distribution shows that sand, silt, and clay are 

highly skewed and paltykurtic just in the case of sand and 

clay but leptokurtic in the case of silt(K≈3.0). The mean 

silt is 11.2±5.3% with high variability (CV of 47.32%). 

The K-S test values for particle size are highly significant 

at the 1% level. These soils are non-saline with mean 
-1electrical conductivity of 0.3±0.5 dS m  with highly 

skewed and leptokurtic. The elevation is 508 m to 861.0 m 

above mean sea level with a mean of 582± 83.7 m. These 
-1soils have high CEC (mean of 16.7±14.4 cmol kg ) 

-1(Moore, 2004) with a maximum of 53.8 cmol kg . These 

soils have low exchangeable Ca (mean of 2.8±4.1 cmol 
-1 -1kg ) and potassium (mean of 0.2±0.2 cmol kg ), medium 

-1in exchangeable magnesium (1.2±1.7 cmol kg ) and high 
-1exchangeable Na (mean of 1.0±1.7 cmol kg ). The area 

receives a mean rainfall of 675.9± 69 mm with a CV of 

10.22 per cent. The K-S test is significant at 1% level for 

all these variables.
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Table 1: Descriptive statistics of soil variables under study

Parameters  Mean±SD  CV(%) Minimum Maximum Skewness Kurtosis 

Carbon density  -1
(t ha )  20.49±9.33 45.55 8.35 39.65 0.34 -1.04 

Clay  (%)  27.56±13.86 50.28 13.16 67.22 1.26 1.37 

Silt  (%)  11.21±5.32 47.50 6.75 29.07 1.70 3.02 

pH
 

7.67±0.98
 

12.81
 

5.78
 

8.99
 

-0.61
 

-0.30
 

CEC
 -1

(cmol kg )
 

16.66±14.44
 

86.68
 

0.00
 

53.81
 

1.25
 

0.92
 

ESP
 

2.99±1.86
 

62.15
 

0.25
 

8.24
 

0.74
 

0.43
 

Ex.
 

Ca
 

-1
(cmol kg )

 
2.77±4.14

 
149.41

 
0.00

 
12.00

 
1.29
 

0.29
 

Ex.
 

K
 

-1(cmol kg )
 

0.23±0.19
 

81.24
 

0.09
 

0.88
 

2.41
 

6.46
 

Ex.
 

Na
 

-1
(cmol kg )

 
0.99±1.72

 
173.74

 
0.08

 
6.89

 
2.47
 

5.05
 

CaCO3

 
-1

(g kg )

 

2.38±4.43

 

186.59

 

0.00

 

13.28

 

1.99

 

2.40

 

Available P

 
-1(kg ha )

 

7.63±5.65

 

74.04

 

1.20

 

23.00

 

1.21

 

1.69

 

-1
Available B (mg kg )

 

0.64±0.38

 

59.46

 

0.19

 

1.80

 

2.03

 

4.27

 

DTPA -Cu

 
-1

(mg kg )

 

1.20±1.04

 

86.11

 

0.29

 

5.80

 

3.35

 

13.41

 

DTPA-

 

Fe

 

-1(mg kg )

 

5.70±4.91

 

86.13

 

1.53

 

16.88

 

1.30

 

0.36

 

DTPA - -1Zn (mg kg )

 

0.30±0.13

 

44.88

 

0.11

 

0.83

 

2.21

 

7.68

 

 

Correlation and regression 

 SOCD exhibited a significant negative 

correlation with sand content, indicating that an increase 

in sand reduces SOC storage in maize-growing soils of 

Karnataka. A similar relationship has been reported in 

Central C under grasslands and broad leaf forest soils 

(Zhong et al., 2018). The positive relation of SOCD with 
2 2silt (R  = 0.252*) and clay (R  = 0.283*) clearly shows 

that accumulation of SOC stocks is largely regulated by 

clay minerals (Xu, et al.  2016). 
 The relation SOCD with particle sizes can be 

explained with theory of SOC saturation (Hassink 

1997), the sand fraction is weak capacity to stabilize 

organic compounds on mineral surfaces as compared to 

silt and clay, which in turn affects the rate of SOC 

storage (Feng, et al.  2013). These findings support the 

hypothesis that the relationship between SOC dynamics 

and clay content may vary depending on climatic 

conditions and land use patterns. The relation of SOCD 

and clay is expressed in linear regression equation as: 
2SOCD (t/ha) = 0.358(clay, %) +10.60 (R  =0.283* 

significant at 5% level). It means that the shrink-swell 

soils have capacity to absorb more organic C molecules 

owing to the larger surface area and the presence of 

polyvalent cations to control the protection of SOC from 

microbial and enzymatic decay, in turn increasing SOC 

storage (Zaffar and Lu 2015). Finely textured soils are   

generally assumed to contain higher amounts of 

protected SOC as compared to more coarsely textured 

soils (Rasmussen et al.  2018). 

Path coefficient analysis 

 The path analysis was performed for having 

quantitative insights on contributing paths of predictors 

variable (14) to a response variable (dependent variable 

(SOCD)). The path analysis has two components like 

direct and indirect effects quantified with path 

coefficients as shown in Figure 1. and Table 2. The 

sequence of direct effects on SOCD has positive with 

available P (0.94) > clay (0.82) > CaCO  (0.68) > silt 3

(0.63) > DTPA-Cu (0.54) but negative with Ex.Na (-.10) 

> Av.B (-0.24) > Ex.K (-0.40) > ESP (-0.48) > pH (-0.61). 
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DTPA-Fe > (-0.87) > DTPA-Zn (-0.89) and CEC (-

1.67). The path model has a high explanatory power with 
2adjusted R  of 1.00. The significant direct effects of soil 

properties like clay, silt, CaCO , Available P and DTPA 3

Cu are positively contributing factors for top soil organic 

carbon density. The total effect of clay and silt on SOCD 

is contributing 44 and 31 % of SOCD.The indirect 

effects are partitioned as 37 % from silt and 31% from 

calcium carbonate for SOCD through clay. The CEC has 

a negative direct effect on SOCD (-1.66) buts zero order 

correlation is positive (r = 0.33) implying there is a true 

association between CEC and SOCD in these soils. 

However, CEC has yield positive on SOCD through pH 

(0.27). It is already stated that at pH > 5.5, the 

exchangeable Ca contributes more than 60 per cent to 

subsoil CEC and its strength relation depends on pH of 

soil ( Solly et al.  2020) ) .The pedological substrates in 

Karnataka contain carbonates in many soil horizons and 

have pH higher than 8.0  previously (Slessarev et al.  
2+2016). The study further suggested  that Ca   plays  vital 

a role in stabilizing organic compounds in alkaline soils 

with less precipitation and  a drier climate favor the 

development of clay minerals with a high abundance of 

negatively charged sites in alkaline soils (Douglas, 

1989).  In Karnataka, geological factors play a dominant 

role in shaping the relationship between precipitation 

and the prevalence of alkaline soils in drier regions. 

Polyvalent cations such as Ca²⁺ and Cu²⁺ occupy 

negatively charged exchange sites on clay minerals, 

facilitating strong interactions with negatively charged 

carboxylic acids commonly found in soils. These 

interactions lead to the formation of stable organo-metal 

complexes, which play a crucial role in protecting soil 

organic carbon from decomposition. Mikutta et al.   (

2007). The influence of soil pH in shaping the 

relationship between CEC and organic C strongly 

corroborates the evidences from earlier studies 

suggesting that soil pH can act as an essential indicator of 

the controlling SOC ( ; Rasmussen et al.  2018 Rowley et 

al.  2018 The simple correlation between CEC and clay ). 

is 0.798**and with silt (0.73**) and favours for the 

stabilization of SOC, through cation bridging and by 

creating complexes with organic molecules when their 

hydration shells are displaced ( . Xu, et al.  2016)

Fig. 1: Direct and indirect effects of soil properties on soil organic carbon density
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Table 2: Correlation coefficient and path analysis coefficients to SOCD  
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Clay

 

(%)

 

0.82

 

0.67

   

0.37

 
-

0.06

 
-

1.09

 

0.14

 

0.10

 
-

0.06

 
-

0.04

 

0.31

 

0.10

 
-

0.02

 

0.19

 

0.14

 
-

0.32

 

0.44

 

Silt
 

(%)
 

0.63
 

0.39
 

0.37
   

-

0.06
 

-

0.76
 

0.11
 

0.19
 

-

0.07
 

-

0.02
 

0.22
 
-

0.03
 
0.00

 
0.22

 
-

0.02
 

-

0.22
 

0.31
 

pH
 

-0.61
 

0.38
 

-

0.06
 

-

0.06
   

0.27
 

0.11
 

-

0.18
 

0.07
 

0.02
 

-

0.12
 
0.09

 
0.03

 
0.09

 

-

0.45
 

-

0.24
 

-0.07
 

CEC -1
(cmol kg ) 

-1.66 2.76 

-

1.09 

-

0.76 0.27   

-

0.14  

-

0.27  0.00  0.11  

-

0.90  

-

0.11  0.02  

-

0.14  

-

0.45  0.15  -0.55  

ESP 

-0.48 0.23 0.14 0.11 0.11 

-

0.14   

-

0.15  

-

0.01  0.01  

-

0.01  0.12  

-

0.02  0.11  

-

0.08  

-

0.16  0.26  

Ex.Ca
 

-1
(cmol kg )

 

-1.00
 

1.00
 

0.10
 

0.19
 

-

0.18
 

-

0.27
 

-

0.15
   

-

0.08
 

-

0.03
 

0.25
 

-

0.45
 
0.03

 
0.04

 
0.07

 

-

0.27
 

0.24
 

Ex.K
 

-1
(cmol kg )

 
-0.40

 
0.16

 

-

0.06

 

-

0.07

 
0.07

 
0.00

 

-

0.01

 

-

0.08

   
0.01

 

-

0.03

 
0.00

 
0.03

 

-

0.03

 

-

0.07

 

-

0.02

 
-0.12

 
Ex.Na

 

-1
(cmol kg )

 
-0.10

 

0.01

 

-

0.04

 

-

0.02

 

0.02

 

0.11

 

0.01

 

-

0.03

 

0.01

   

-

0.06

 

-

0.01

 

0.00

 

0.01

 

-

0.03

 

-

0.01

 

-0.03

 CaCO3

 

-1
(g kg )

 0.68

 

0.46

 

0.31

 

0.22

 

-

0.12

 

-

0.90

 

-

0.01

 

0.25

 

-

0.03

 

-

0.06

   

0.05

 

-

0.03

 

-

0.05

 

0.23

 

-

0.03

 

0.27

 Available P

 
-1

(kg ha )

 

0.93

 

0.87

 

0.10

 

-

0.03

 

0.09

 

-

0.11

 

0.12

 

-

0.45

 

0.00

 

-

0.01

 

0.05

   

-

0.08

 

-

0.01

 

0.02

 

-

0.16

 

0.40

 Available B

 
-1

(mg kg )

 

-0.24

 

0.06

 

-

0.02

 

0.00

 

0.03

 

0.02

 

-

0.02

 

0.03

 

0.03

 

0.00

 

-

0.03

 

-

0.08

   

0.00

 

-

0.08

 

0.00

 

-0.05

 
DTPA –Cu

 

-1
(mg kg )

 

0.54

 

0.29

 

0.19

 

0.22

 

0.09

 

-

0.14

 

0.11

 

0.04

 

-

0.03

 

0.01

 

-

0.05

 

-

0.01

 

0.00

   

-

0.22

 

-

0.32

 

0.18

 

DTPA-Fe

 

-1
(mg kg )

 

-0.87

 

0.75

 

0.14

 

-

0.02

 

-

0.45

 

-

0.45

 

-

0.08

 

0.07

 

-

0.07

 

-

0.03

 

0.23

 

0.02

 

-

0.08

 

-

0.22

   

0.36

 

0.16

 

DTPA -
-1

Zn (mg kg )

 

-0.90

 

0.81

 

-

0.32

 

-

0.22

 

-

0.24

 

0.15

 

-

0.16

 

-

0.27

 

-

0.02

 

-

0.01

 

-

0.03

 

-

0.16

 

0.00

 

-

0.32

 

0.36

   

-0.45

 

 

Potential for increasing maize yield 

 The fertiliser use pattern and the maize yield 

was collected from the maize farmers in a structured 

questionnaire through personally interview. The 

analysis of fertilizer uses patterns among maize farmers 

revealed significant insights on fertilizer applicators. 

The difference in additional benefits likely to be obtained 

by adopting the balanced fertilizers and cost involved in 

correcting fertilizer misapplication is the net change in 

income per hectare (Table 3).

99Effects of soil properties on organic carbon density



Table 3: Economic value of balanced fertiliser uses in maize cultivation

 Particulars Value 

Mean value of farmers Practices (FP)    
-1FYM (t ha ) 2.6 

-1Nitrogen (kg ha ) 97.2 
-1Phosphorus (kg ha ) 81.3 

Potash -1
(kg ha ) 11.6 

Grain (q -1
 ha ) 21.7 

-1
Market Price of grain (Rs q )  1398 

Soil test-based fertilizer Recommendation (STBR)   
-1FYM (t ha ) 8.6 

-1Nitrogen (kg ha ) 124.9 
-1Phosphorus (kg ha ) 73.5 

Potash (k
-1g ha ) 31.1 

-1
Grain (q ha )  40 

Misapplication (% )/yield gap (STBR-FP) / (STBR)   

FYM (%) 69.8 

Nitrogen (%) 22.2 

Phosphorus (%) -10.6 

Potash (%) 62.7 

Grain (%) 45.8 

Impact of Soil Information (Rs)   
-1

Additional Cost (Rs ha ) 6432.0 

Additional Benefit -1s (Rs ha ) 43547.5 
-1Net change Income (Rs ha ) 37115.5 

 
 The estimated benefits of soil test-based 

fertilizer recommendations for maize cultivation are 

presented in Table 3. In the study, maize farmers 
-1currently apply an average of 2.6 t ha  of farmyard 

-1 -1manure, 97.2 kg ha  of nitrogen (N), 81.3 kg ha  of 
-1phosphorus (P), and 11.6 kg ha  of potassium (K). 

However, the soil test-based recommendations for 
-1

optimal maize yield (8.6 t ha ) suggest fertilizer 
-1 -1

applications of 124.9 kg ha  N, 73.5 kg ha  P, and 31.1 kg 
-1

ha  K. The difference between soil test-based 

requirements and farmers' current practices indicates 

misapplication of fertilizers. If extension agencies 

promote soil test-based recommendations considering 

soil fertility status, farmers could reduce excess 

phosphorus application by 10.6% while addressing 

deficiencies in nitrogen (22%) and potassium (63%). 

The additional cost of correcting fertilizer misapplication 

is Rs. 6,432 per hectare, whereas the additional benefits 

from adopting soil test-based fertilization amount to       

Rs. 43,547 per hectare. This results in a net gain of Rs. 

37,115 per hectare per year. Moreover, the cost of soil 

testing, estimated at Rs. 300 per sample, is significantly 

lower than the net additional benefits per hectare, 

highlighting the economic feasibility of adopting soil 

test-based fertilizer management.

Conclusion

 The study on SOCD in Karnataka soils revealed 

that while the relationship between Cation Exchange 

Capacity (CEC) and SOCD is weak, it is significantly 

influenced by soil pH and the semi-arid climate, which 
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largely influences the region's soil physicochemical 

conditions. The combination of pedological factors, a 

range of elevation, and mean annual rainfall in 

Karnataka provides a direct relationship for exploring 

the interrelationships between soil properties and 

SOCD using a path model. A key finding of this study is 
+

the protective role of Ca²  in stabilizing organic carbon 

through the formation of organo-metal complexes, 

which clarifies the functional relationship between clay, 

silt, and SOC and helps predict future changes in soil 

carbon storage. This pedological insight from soil 

surveys can serve as a baseline for regional soil carbon 

monitoring programs. These findings highlight that clay 

and SOC content are strongly correlated, with clay 

acting as a key factor in stabilizing organic carbon 

through its interaction with metal cations. Hence, clay, 

silt, CaCO , available phosphorus, and DTPA-Cu are 3

identified as critical traits for improving SOCD per 

hectare in the shrink-swell soils of Karnataka. 

Additionally, the economic analysis of soil test-based 

fertilizer recommendations demonstrated substantial 

financial benefits. The per hectare cost of correcting 

fertilizer misapplication is Rs. 6,432, while the 

additional benefits from balanced fertilization amount 

to Rs. 43,547 per hectare, resulting in a net gain of Rs. 

37,115 per hectare per year. These findings highlight the 

importance of adopting soil test-based fertilizer 

management for enhancing both soil productivity and 

economic returns in maize cultivation.
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